Skip to main content
Log in

Simulations of Wall Bounded Turbulent Flows Using General Pressure Equation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The general pressure equation (GPE) based method is fully explicit, and the method does not require either solving the pressure Poisson equation nor executing sub-iteration for incompressible flow simulation. However, few numerical validations of GPE method are available, especially under complex flows like turbulence. In this work, GPE is used to conduct direct numerical simulations of the turbulent lid-driven cavity (LDC) flow at \({\text {Re}}=3200\) and fully developed turbulent flow through a square duct at \({\text {Re}}_{\tau }=360.\) Predicted turbulence statistics are compared with existing numerical and experimental data, providing an excellent quantitative agreement. The intricate flow patterns such as the Taylor–Görtler-like vortices in LDC flow and the mean secondary flow at the cross-section in the square duct are captured, showing both qualitative and quantitative agreements with measurements. Results from the present study indicate the capability of the GPE method for accurate incompressible turbulent flow calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ansumali, S., Karlin, I.V., Öttinger, H.C.: Thermodynamic theory of incompressible hydrodynamics. Phys. Rev. Lett. 94, 080602 (2005)

    Article  Google Scholar 

  • Borok, S., Ansumali, S., Karlin, I.V.: Kinetically reduced local Navier–Stokes equations for simulation of incompressible viscous flows. Phys. Rev. E 76, 066704 (2007)

    Article  Google Scholar 

  • Chorin, A.J.: The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73(6), 928 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Clausen, J.R.: Entropically damped form of artificial compressibility for explicit simulation of incompressible flow. Phys. Rev. E 87, 013309 (2013)

    Article  Google Scholar 

  • Delorme, Y.T., Puri, K., Nordstrom, J., Linders, V., Dong, S., Frankel, S.H.: A simple and efficient incompressible Navier–Stokes solver for unsteady complex geometry flows on truncated domains. Comput. Fluids 150, 84 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Dorschner, B., Bosch, F., Chikatamarla, S.S., Boulouchos, K., Karlin, I.V.: Kinetically reduced local Navier–Stokes equations for simulation of incompressible viscous flows. J. Fluid Mech. 801, 623 (2016)

    Article  MathSciNet  Google Scholar 

  • Eitel-Amor, G., Meinke, M., Schroder, W.: A lattice-Boltzmann method with hierarchically refined meshes. Comput. Fluids 75, 127 (2013)

    Article  MATH  Google Scholar 

  • Gavrilakis, S.: Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech. 244, 101 (1992)

    Article  Google Scholar 

  • Hashimoto, T., Yasuda, T., Tanno, I., Tanaka, Y., Morinishi, K., Satofuka, N.: Multi-GPU parallel computation of unsteady incompressible flows using kinetically reduced local Navier–Stokes equations. Comput. Fluids 167, 215 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88(3), 927 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • He, X., Doolen, G.D., Clark, T.: Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier–Stokes equations. J. Comput. Phys. 179(2), 439 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Hong, P.Y., Huang, L.M., Lin, L.S., Lin, C.A.: Scalable multi-relaxation-time lattice Boltzmann simulations on multi-GPU cluster. Comput. Fluids 110, 1 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, H.W., Hsu, J.B., Lo, W., Lin, C.A.: Large eddy simulations of turbulent Couette–Poiseuille and Couette flows inside a square duct. J. Fluid Mech. 702, 89 (2012)

    Article  MATH  Google Scholar 

  • Ilio, G.D., Dorschner, B., Bella, G., Succi, S., Karlin, I.V.: Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes. J. Fluid Mech. 849, 35 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Kajzer, A., Pozorski, J.: Application of the entropically damped artificial compressibility model to direct numerical simulation of turbulent channel flow. Comput. Math. Appl. 76(5), 997 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin, I.V., Tomboulides, A.G., Frouzakis, C.E., Ansumali, S.: Kinetically reduced local Navier–Stokes equations: an alternative approach to hydrodynamics. Phys. Rev. E 74, 035702 (2006)

    Article  Google Scholar 

  • Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Koda, Y., Lien, F.S.: The lattice Boltzmann method implemented on the GPU to simulate the turbulent flow over a square cylinder confined in a channel. Flow Turbul. Combust. 94(3), 495 (2015)

    Article  Google Scholar 

  • Kuwata, Y., Suga, K.: Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. J. Comput. Phys. 311, 348 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, Y.H., Huang, L.M., Zou, Y.S., Huang, S.C., Lin, C.A.: Simulations of turbulent duct flow with lattice Boltzmann method on GPU cluster. Comput. Fluids 168, 14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Madabhushi, R.K., Vanka, S.: Large eddy simulation of turbulence-driven secondary flow in a square duct. Phys. Fluids A 3, 2734 (1991)

    Article  MATH  Google Scholar 

  • Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \(\text{ Re }_\tau =590\). Phys. Fluids 11, 943 (1999)

    Article  MATH  Google Scholar 

  • Ohwada, T., Asinari, P., Yabusaki, D.: Artificial compressibility method and lattice Boltzmann method: similarities and differences. Comput. Math. Appl. 61(12), 3461 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Owolabi, B.E., Lin, C.A.: Marginally turbulent Couette flow in a spanwise confined passage of square cross section. Phys. Fluids 30(7), 075102 (2018)

    Article  Google Scholar 

  • Prasad, A.K., Koseff, J.R.: Reynolds number and end-wall effects on a lid-driven cavity flow. Phys. Fluids A 1(2), 208 (1989)

    Article  Google Scholar 

  • Shi, X., Chiu, T.H., Agrawal, T., Lin, C.A., Hwang, F.N.: A parallel nonlinear multigrid solver for unsteady incompressible flow simulation on multi-GPU cluster. J. Comput. Phys. (submitted)

  • Soh, W., Goodrich, J.W.: Unsteady solution of incompressible Navier–Stokes equations. J. Comput. Phys. 79(1), 113 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Toutant, A.: General and exact pressure evolution equation. Phys. Lett. A 381(44), 3739 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Toutant, A.: Numerical simulations of unsteady viscous incompressible flows using general pressure equation. J. Comput. Phys. 374, 822 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Williamson, J.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 35(1), 48 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks to the Ph.D. student Chiu Tzu-Hsuan at NTHU for providing the performance data of LBM. The authors gratefully acknowledge the supports by the Ministry of Science and Technology, Taiwan (Grant No. 105-2221-E-007-061-MY3) and the computational facilities provided by the Taiwan National Center for High-Performance Computing.

Funding

This study was funded by Ministry of Science and Technology, Taiwan (Grant No. 105-2221-E-007-061-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-An Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Lin, CA. Simulations of Wall Bounded Turbulent Flows Using General Pressure Equation. Flow Turbulence Combust 105, 67–82 (2020). https://doi.org/10.1007/s10494-020-00119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00119-z

Keywords

Navigation