Skip to main content
Log in

Turbulence Modeling for Turbulent Boundary Layers at Supercritical Pressure: A Model for Turbulent Mass Flux

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Based on the analysis of the direct numerical simulation (DNS) database of the heated and unheated turbulent boundary layers at supercritical pressures (Kawai J. Fluid Mech. 865, 563 2019), this paper proposes a Reynolds-averaged Navier-Stokes (RANS) turbulence modeling for predicting the turbulent boundary layers at supercritical pressure where large density fluctuations are induced by the pseudo-boiling phenomena. The proposed approach is to model the mass flux contribution term \(M_{\tau }=\overline {u_{i}^{\prime \prime }} \partial \overline {\tau _{ij}}/\partial x_{j}\) in the turbulent kinetic energy equation (more specifically the turbulent mass flux \(\overline {u_{i}^{\prime \prime }}= -\overline {\rho ^{\prime } u_{i}^{\prime }}/\overline {\rho }\) in Mτ term) and add the modeled Mτ to the k-transport equation in the RANS model in order to incorporate the effects of the large density fluctuations on turbulence observed in the DNS. The key idea of modeling the turbulent mass flux in Mτ is to employ the gradient diffusion hypothesis and we propose to model \(\overline {u_{i}^{\prime \prime }}\) as a function that is proportional to the density gradient (i.e. \(\overline {u_{i}^{\prime \prime }} \propto \overline {\mu }_{t} \partial \overline {\rho }/\partial x_{j}\)). The proposed RANS model shows significant improvements over existing models for predicting the logarithmic law for the mean velocity and temperature in the turbulent boundary layers at supercritical pressure, something that existing RANS models fail to do robustly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yamagata, K., Nishikawa, K., Hasegawa, S., Fujii, T., Yoshida, S.: . Int. J. Heat Mass Transf. 15(12), 2575 (1972). https://doi.org/10.1016/0017-9310(72)90148-2

    Article  Google Scholar 

  2. Yoo, J.Y.: . Annu. Rev. Fluid Mech. 45, 495 (2013). https://doi.org/10.1146/annurev-fluid-120710-101234

    Article  Google Scholar 

  3. Bellmore, C.P., Reid, R.L.: . J. Heat Transf. 105(3), 536 (1983). https://doi.org/10.1115/1.3245618

    Article  Google Scholar 

  4. He, S., Kim, W.S., Bae, J.H.: . Int. J. Heat Mass Transf. 51(19–20), 4659 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.028

    Article  Google Scholar 

  5. Cheng, X., Kuang, B., Yang, Y.H.: . Nucl. Eng. Des. 237(3), 240 (2007). https://doi.org/10.1016/j.nucengdes.2006.06.011

    Article  Google Scholar 

  6. Yang, J., Oka, Y., Ishiwatari, Y., Liu, J.Y.J.: . Nucl. Eng. Des. 237(3), 420 (2007). https://doi.org/10.1016/j.nucengdes.2006.08.003

    Article  Google Scholar 

  7. Kawai, S.: . J. Fluid Mech. 865, 563 (2019). https://doi.org/10.1017/jfm.2019.13

    Article  MathSciNet  Google Scholar 

  8. Spalart, R.P.: . J. Fluid Mech. 187, 61 (1988). https://doi.org/10.1017/S0022112088000345

    Article  Google Scholar 

  9. Nemati, H., Patel, A., Boersma, B.J., Pecnik, R.: . Int. J. Heat Mass Transf. 83, 741 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.039

    Article  Google Scholar 

  10. Nemati, H., Patel, A., Boersma, B.J., Pecnik, R.: . J. Fluid Mech. 800, 531 (2016). https://doi.org/10.1017/jfm.2016.411

    Article  MathSciNet  Google Scholar 

  11. Peeters, J.W.R., Pecnik, R., van der Hagen, J.H., Boersma, B.J.: . J. Fluid Mech. 799, 505 (2016). https://doi.org/10.1017/jfm.2016.383

    Article  MathSciNet  Google Scholar 

  12. Van Driest, E.R.: . J. Aeronaut. Sci. 18(3), 145 (1951). http://arc.aiaa.org/doi/abs/10.2514/8.1895

    Article  MathSciNet  Google Scholar 

  13. Fernholz, H.H., Finley, P.J.: A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers. AGARD, Report AG 253 (1980)

  14. Huang, P.G., Bradshaw, P., Coakley, T.J.: . AIAA J. 31(9), 1600 (1993). https://doi.org/10.2514/3.11820

    Article  Google Scholar 

  15. Cécora, R.D., Radespiel, R., Eisfeld, B., Probst, A.: . AIAA J. 53(3), 739 (2015). https://doi.org/10.2514/1.J053250

    Article  Google Scholar 

  16. Menter, F.R.: . AIAA J. 32(8), 1598 (1994). https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  17. Baldwin, B., Lomax, H.: Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78–257 AIAA (1978)

  18. Shima, E., Jounouchi, T.: In: Proceedings of the 14th NAL Symposium on Aircraft Computational Aerodynamics (NAL, 1997), pp. 7–12 (1997)

  19. Liou, M.S., Steffen, C.J.J.: . J. Comput. Phys. 107(1), 23 (1993). https://doi.org/10.1006/jcph.1993.1122

    Article  MathSciNet  Google Scholar 

  20. van Leer, B.: . J. Comput. Phys. 32(1), 101 (1979). https://doi.org/10.1016/0021-9991(79)90145-1

    Article  Google Scholar 

  21. Yoon, S., Jameson, A.: . AIAA J. 26(9), 1025 (1988). https://doi.org/10.2514/3.10007

    Article  Google Scholar 

  22. Rumsey, C.: Turbulence modeling resource. Tech. rep., NASA Langley Research Center

  23. Huang, P.G., Coleman, G.N., Bradshaw, P.: . J. Fluid Mech. 305, 185 (1995). https://doi.org/10.1017/S0022112095004599

    Article  Google Scholar 

  24. Pirozzoli, S., Grasso, F., Gatski, T.B.: . Phys. Fluids 16(3), 530 (2004). https://doi.org/10.1063/1.1637604

    Article  Google Scholar 

  25. Rubesin, M.W.: Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows. NASA CR-177556 NASA (1990)

  26. Krishnamurty, V.S., Shyy, W.: . Phys. Fluids 9(9), 2769 (1997). https://doi.org/10.1063/1.869468

    Article  MathSciNet  Google Scholar 

  27. Sarkar, S., Lakshmanan, B.: . AIAA J. 27(5), 743 (1991). https://doi.org/10.2514/3.10649

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) KAKENHI 26709066. Computer resources of the K computer was provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp150035, hp160133, and hp170056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soshi Kawai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Sensitivity of Turbulent Prandtl Number

Appendix: Sensitivity of Turbulent Prandtl Number

In Section 2.2, the law of the wall for the temperature is derived as in Eq. 9 under the assumption of constant turbulent Prandtl number, which leads directly to a proposal of a method to determine the suggested value for the turbulent Prandtl number (Prt = 1.5 and 1.1 are suggested for p = 2 and 4 MPa cases). Nevertheless, since the sensitivity of the turbulent Prandtl number may add valuable information, Fig. 12 shows the sensitivity of the turbulent Prandtl number to the mean velocity and temperature, where the results obtained by the proposed k-ω SST+Mτ model with Prt = 1.5 (suggested value derived in Section 2.2) and Prt = 0.9 (typical value for constant-property ideal-gas flows) for the heated case (Tw = 100K) at p = 2 MPa are compared. As clearly seen, the turbulent Prandtl number affects significantly to the temperature profile, whereas the van Driest transformed mean velocity is insensitive to the choice of the turbulent Prandtl number although the density and viscosity are a function of temperature. By reducing the turbulent Prandtl number from the suggested value Prt = 1.5 to the typical value Prt = 0.9 for constant-property ideal-gas flows, the mean temperature is apart from the logarithmic law. Also, the insensitivity of the turbulent Prandtl number to the predicted mean velocity indicates that the improvement of the predicted logarithmic law for the velocity as in Fig. 9 is due to the modeling of the turbulent mass flux Mτ proposed in this study.

Fig. 12
figure 12

a Van Driest transformed mean streamwise velocity and b transformed mean temperature \(\overline {T}^{*}\) obtained by the proposed k-ω SST+Mτ model with different turbulent Prandtl number Prt = 1.5 (suggested value derived in Section 2.2) and 0.9 (typical value for constant-property ideal-gas flows) for heated case Tw = 100K at p = 2 MPa. Black lines, k-ω SST+Mτ model with Prt = 1.5; blue lines, k-ω SST+Mτ model with Prt = 0.9; circles, corresponding DNS [7]; thin gray lines, in (a) \(\overline {u}_{vD}^{+}=1/0.41\log (y^{+})+5.2\), in (b) \(\overline {T}^{*}=1.5/0.41\log (y^{+})+1.5\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawai, S., Oikawa, Y. Turbulence Modeling for Turbulent Boundary Layers at Supercritical Pressure: A Model for Turbulent Mass Flux. Flow Turbulence Combust 104, 625–641 (2020). https://doi.org/10.1007/s10494-019-00079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00079-z

Keywords

Navigation