Skip to main content

Advertisement

Log in

Electrospun Starch Fibers Loaded with Pinhão (Araucaria angustifolia) Coat Extract Rich in Phenolic Compounds

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Pinhão coat extract is rich in phenolic compounds. Thus, the present study aimed to encapsulate pinhão (Araucaria angustifolia) coat extract (PCE) in electrospun starch fibers, and evaluate its antioxidant activity and in vitro release. The PCE’ total and individual phenolic compounds were evaluated. Fiber-forming polymer solutions were prepared within 50% of soluble potato starch in 75% of formic acid containing PCE in various concentrations [0%, 0.5%, 1.0% or 1.5% (w/v)] and measured by its rheological parameters and electrical conductivity. The fibers were electrospun and evaluated by efficiency of encapsulation, morphology, size distribution, thermal stability, infrared spectrum, antioxidant activity and in vitro release. The PCE presented high amount of total phenolic compounds (225.32 ± 0.89 μg·g−1) and high concentrations of catechin/epicatechin dimer and catechin. The electrospun starch fibers had encapsulation efficiency values of 62–100% and improved fiber morphology. Encapsulated PCE presented higher thermal stability than its free form and FT-IR spectra showed interactions between fibers constituents. Starch fibers loaded with different PCE concentrations showed antioxidant activity of 28% inhibition, with no statistical difference between the concentrations (p ˃ 0.05). The fibers showed rapid and in low quantities in vitro release, with fibers loaded with 0.5% PCE presenting higher encapsulation efficiency and lower % release. Throughout this study outcome, we can suggest that this biodegradable nanomaterial is applicable as an antioxidant agent in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.J. Daroit, A.P.F. Corrêa, T.V. Klug, A. Brandelli, J. Food Biochem. 34, 1216–1230 (2010)

    Article  CAS  Google Scholar 

  2. T.B. de Freitas, C.H.K. Santos, M.V. Silva, M.A. Shiraib, M.I. Dias, L. Barros, M.F. Barreiro, I.C.F.R. Ferreira, O.H. Gonçalves, F.V. Leimann, Food Packag. Shelf Life 15, 28–34 (2018)

    Article  Google Scholar 

  3. V. Sant’Anna, N.M. Sfoglia, G.D. Mercali, A.P.F. Corrêa, A. Brandelli, Int. J. Food Sci. Technol. 51, 1932–1936 (2016)

    Article  Google Scholar 

  4. R.M. Daudt, P.I. Back, N.S.M. Cardozo, L.D.F. Marczak, I.C. Külkamp-Guerreiro, Carbohydr. Polym. 134, 573–580 (2015)

    Article  CAS  Google Scholar 

  5. G.H. Trojaike, E. Biondo, R.L. Padilha, A. Brandelli, V. Sant’Anna, Food Bioprocess Technol. 12, 193–197 (2018)

    Article  Google Scholar 

  6. L.-T. Lim, A. C. Mendes, and I. S. Chronakis, (1st ed. Elsevier Inc., 2019)

  7. K. Moomand, L.-T. Lim, Food Res. Int. 62, 523–532 (2014)

    Article  CAS  Google Scholar 

  8. D. Su, L. Wang, K. Liang, F. Zhang, D. Lin,Y. Hu, H. Ji, X. Li, S. Chen, X. Y, Mater. Lett. 172, 202–206 (2016)

  9. F. Sadegh-Hassani, A. Mohammadi Nafchi, Int. J. Biol. Macromol. 67, 458–462 (2014)

    Article  CAS  Google Scholar 

  10. L. Kong, G.R. Ziegler, Biomacromolecules 13, 2247–2253 (2012)

    Article  CAS  Google Scholar 

  11. R.M. Daudt, I.C. Külkamp-guerreiro, F. Cladera-olivera, R.C.S. Thys, L.D.F. Marczak, Ind. Crop. Prod. 52, 420–429 (2014)

    Article  CAS  Google Scholar 

  12. C. M. L. Franco, C. Ogawa, T. Rabachini, T. de S. Rocha, M. P. Cereda, and J. Jane, Brazilian Arch. Biol. Technol., 53, 443–454 (2010)

  13. Y.V. García-Tejeda, C. López-González, J.P. Pérez-Orozco, R. Rendón-Villalobos, A. Jiménez-Pérez, E. Flores-Huicochea, J. Solorza-Feria, C.A. Bastida, LWT Food Sci. Technol. 54, 447–455 (2013)

    Article  Google Scholar 

  14. L. Kong, G.R. Ziegler, Food Hydrocoll. 36, 20–25 (2014)

    Article  CAS  Google Scholar 

  15. A. Lancuški, G. Vasilyev, J.-L. Putaux, E. Zussman, Biomacromolecules 16, 2529–2536 (2015)

    Article  Google Scholar 

  16. W. Wang, X. Jina, Y. Zhua, C. Zhua, J. Yanga, H. Wanga, T. Lin, Carbohydr. Polym. 140, 356–361 (2016)

    Article  CAS  Google Scholar 

  17. L.M. Fonseca, J.P. Oliveira, P.D. Oliveira, E.R. Zavareze, A.R.G. Dias, L.-T. Lim, Food Res. Int. 116, 1318–1326 (2019)

    Article  CAS  Google Scholar 

  18. L.M. Fonseca, F.T. Silva, M.D. Antunes, S.L.M. Halal, L.-T. Lim, A.R.G. Dias, Starch - Stärke 71 (2019). https://doi.org/10.1002/star.201800089

  19. B.T. Swain, W.E. Hillis, J. Sci. Food Agric. 643 (1959)

  20. L. Keawchaoon, R. Yoksan, Colloids Surf. B: Biointerfaces 84, 163–171 (2011)

    Article  CAS  Google Scholar 

  21. A. Mohammadi, S.M. Jafari, E. Assadpour, A.F. Esfanjani, Int. J. Biol. Macromol. 82, 816–822 (2015)

    Article  Google Scholar 

  22. E.A. Koehnlein, A.E.S. Carvajal, E.M. Koehnlein, J.S. Coelho-Moreira, F.D. Inácio, R. Castoldi, A. Bracht, R.M. Peralta, Afr. J. Food Sci. 6, 512–518 (2012)

    Article  CAS  Google Scholar 

  23. C.H.K. Santos, M.R. Baqueta, A. Coqueiro, M.I. Dias, L. Barrosc, M.F. Barreiro, I.C.F.R. Ferreira, O.H. Gonçalves, E. Bona, M.V. Silva, F.V. Leimann, Food Chem. 261, 216–223 (2018)

    Article  CAS  Google Scholar 

  24. K. Luo, C.-H. Koa, G.G.-L. Yue, J.K.-M. Lee, K.-K. Lia, M. Lee, G. Li, K.-P. Fung, P.-C. Leung, C.B.-S. Lau, J. Nutr. Biochem. 25, 395–403 (2014)

    Article  CAS  Google Scholar 

  25. X. Su, W. Wang, T. Xia, L. Gao, G. Shen, Y.P. Id, PLoS One 13, 1–17 (2018)

    Google Scholar 

  26. S. Kakkar and S. Bais, ISRN Pharmacol.., 1–9 (2014)

  27. O.R. Pereira, A.M. Peres, A.M.S. Silva, M.R.M. Domingues, S.M. Cardoso, Food Res. Int. 54, 1773–1780 (2013)

    Article  CAS  Google Scholar 

  28. F. Michelon, C.S. Branco, C. Calloni, I. Giazzon, F. Agostini, P.K.W. Spada, M. Salvador, Curr. Nutr. Food Sci. 8, 155–159 (2012)

    Article  CAS  Google Scholar 

  29. Y.P. Neo, S. Swift, S. Ray, M. Gizdavic-Nikolaidis, J. Jin, C.O. Perera, Food Chem. 141 (2013). https://doi.org/10.1016/j.foodres.2018.08.019

  30. J.A. Evangelho, R.L. Crizel, F.C. Chaves, L. Prietto, V.Z. Pinto, M.Z. Mirandab, A.R.G. Dias, E.R. Zavareze, Food Res. Int. (2018). https://doi.org/10.1016/j.foodres.2018.08.019

  31. A. Haider, S. Haider, I. Kang, Arab. J. Chem. 15, 1878–5352 (2015)

    Google Scholar 

  32. J.A. Bhushani, C. Anandharamakrishnan, Trends Food Sci. Technol. 38, 21–33 (2014)

    Article  Google Scholar 

  33. E.C. Lima, B. Royer, J.C.P. Vaghetti, J.L. Brasil, N.M. Simon, A.A. Santos, F.A. Pavan, S.L.P. Dias, E.V. Benvenutti, E.A. Silva, J. Hazard. Mater. 140, 211–220 (2006)

    Article  Google Scholar 

  34. J. Hong, R. Chen, X.-A. Zeng, Z. Han, Food Chem. 192, 15–24 (2016)

    Article  CAS  Google Scholar 

  35. L.M. Fonseca, A.K. Henkes, G.P. Bruni, L.A.N. Viana, C.M. Moura, W.H. Flores, A.F. Galio, Food Biophys. 13, 163–174 (2018)

    Article  Google Scholar 

  36. Y. Wu, F. Geng, P.R. Chang, J. Yu, X. Ma, Carbohydr. Polym. 76, 299–304 (2009)

    Article  CAS  Google Scholar 

  37. L.M. Fonseca, C.E.S. Cruxen, G.P. Bruni, A.M. Fiorentini, E.R. Zavareze, L.-T. Lim, A.R.G. Dias, Int. J. Biol. Macromol. 139, 1182–1190 (2019)

    Article  CAS  Google Scholar 

  38. Y.-P. Neo, A. Ariffin, C.-P. Tan, Y.-A. Tan, Food Chem. 122, 353–359 (2010)

    Article  CAS  Google Scholar 

  39. Commission regulation (EU) No 10/2011, “Plastic materials and articles intended to come into contact with food. 10/2011/EC.” (2011)

  40. R. Korehei, J.F. Kadla, Carbohydr. Polym. 100, 150–157 (2014)

    Article  CAS  Google Scholar 

  41. B. Ghorani, N. Tucker, Food Hydrocoll. 51, 227–240 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed by CAPES (Finance Code 001”). We would like to thank CEME-SUL from FURG and Center for Development and Control of Biomaterials - Faculty of Dentistry from UFPEL, for the SEM and Rheology analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Martins Fonseca.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, L.M., de Oliveira, J.P., Crizel, R.L. et al. Electrospun Starch Fibers Loaded with Pinhão (Araucaria angustifolia) Coat Extract Rich in Phenolic Compounds. Food Biophysics 15, 355–367 (2020). https://doi.org/10.1007/s11483-020-09629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09629-9

Keywords

Navigation