Skip to main content
Log in

Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We propose a novel approach to background-oriented schlieren (BOS) tomography (BOST) that unifies the deflection sensing and reconstruction algorithms. BOS is a 2D flow visualization technique that renders light deflections due to refraction in the fluid. Simultaneous BOS measurements from unique views can be reconstructed by tomography to estimate the fluid’s 3D refractive index field. The cameras are focused through the fluid on textured background patterns. Deflections between an undistorted reference image and distorted image are typically determined by gradient-based optical flow (OF), which is a complex inverse problem and potential source of error in BOST. This paper presents an alternative approach to BOST that unifies the OF equations and deflection model. Our new operator simultaneously calculates the image distortions seen by each camera for a discrete refractive index distribution. Unified BOST (UBOST) thus reconstructs observed image distortions instead of inferred deflections, which are influenced by user-selected OF parameters. The UBOST operator has one third as many equations as the classical BOST operator. We show that our formulation reduces the effects of model error and the computational cost of reconstruction. These advantages are demonstrated with a numerical experiment using phantoms of varied complexity. Best practice UBOST reconstructions were more accurate than classical reconstructions of the exact deflections for each phantom. Moreover, UBOST estimates converged substantially faster, resulting in a \(\ge \) 62.5% speedup with our solver.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. PIV algorithms are sometimes considered to be distinct from OF. However, since both methods yield the apparent displacement field described by Davies (2004), we opt for the consolidated taxonomy of Atcheson et al. (2009).

  2. See Chapter 2, Eqs. (2.3) to (2.5), and Appendix A.6 of Settles (2001) for an alternative derivation of Eq. (6) in terms of the angular deflection of a ray.

  3. Axisymmetric BOST uses a single camera but implies the same set of deflections for infinite rotations of this view, so the same argument applies in that case.

References

  • Agrawal AK, Butuk NK, Gollahalli SR, Griffin D (1998) Three-dimensional rainbow schlieren tomography of a temperature field in gas flows. Appl Opt 37(3):479–485

    Article  Google Scholar 

  • Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason Imaging 6(1):81–94

    Article  Google Scholar 

  • Atcheson B, Heidrich W, Ihrke I (2009) An evaluation of optical flow algorithms for background oriented schlieren imaging. Exp Fluids 46(3):467–476

    Article  Google Scholar 

  • Atcheson B, Ihrke I, Heidrich W, Tevs A, Bradley D, Magnor M, Seidel HP (2008) Time-resolved 3D capture of non-stationary gas flows. ACM Trans Graph 27:132

    Article  Google Scholar 

  • Baker S, Scharstein D, Lewis J, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. Int J Comput Vis 92(1):1–31

    Article  Google Scholar 

  • Bathel BF, Weisberger J, Jones SB, Klemkowsky JN, Clifford C, Thurow BS (2019) Development of tomographic background-oriented schlieren capability at NASA Langley Research Center. In: AIAA Aviation 2019 Forum, p 3288

  • Born M, Wolf E, Bhatia AB, Clemmow PC, Gabor D, Stokes AR, Taylor AM, Wayman PA, Wilcock WL (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: European Conference on Computer Vision, Springer, pp 25–36

  • Cai S, Mémin E, Dérian P, Xu C (2018) Motion estimation under location uncertainty for turbulent fluid flows. Exp Fluids 59(1):8

    Article  Google Scholar 

  • Cassisa C, Simoens S, Prinet V, Shao L (2011) Subgrid scale formulation of optical flow for the study of turbulent flow. Exp Fluids 51(6):1739–1754

    Article  Google Scholar 

  • Chen X, Zillé P, Shao L, Corpetti T (2015) Optical flow for incompressible turbulence motion estimation. Exp Fluids 56(1):8

    Article  Google Scholar 

  • Clem M, Brown C, Fagan A (2013) Background oriented schlieren implementation in a jet-surface interaction test. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 38

  • Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97

    Article  Google Scholar 

  • Dalziel S, Hughes GO, Sutherland BR (2000) Whole-field density measurements by ’synthetic schlieren’. Exp Fluids 28(4):322–335

    Article  Google Scholar 

  • Daun KJ, Grauer SJ, Hadwin PJ (2016) Chemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior information. J Quant Spectrosc Radiat Transf 172:58–74

    Article  Google Scholar 

  • Davies ER (2004) Machine vision: theory, algorithms, practicalities. Elsevier, Oxford

    Google Scholar 

  • Decamp S, Kozack C, Sutherland B (2008) Three-dimensional schlieren measurements using inverse tomography. Exp Fluids 44(5):747–758

    Article  Google Scholar 

  • Freitag M, Klein M, Gregor M, Nauert A, Geyer D, Schneider C, Dreizler A, Janicka J (2005) Mixing analysis of a swirling recirculating flow using DNS and experimental data. Int J Heat Fluid Flow 27(4):636–643

    Article  Google Scholar 

  • Goldhahn E, Seume J (2007) The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field. Exp Fluids 43(2–3):241–249

    Article  Google Scholar 

  • Grauer SJ, Hadwin PJ, Daun KJ (2017) Improving chemical species tomography of turbulent flows using covariance estimation. Appl Opt 56(13):3900–3912

    Article  Google Scholar 

  • Grauer SJ, Unterberger A, Rittler A, Daun KJ, Kempf AM, Mohri K (2018) Instantaneous 3D flame imaging by background-oriented schlieren tomography. Combust Flame 196:284–299

    Article  Google Scholar 

  • Hashimoto Y, Fujii K, Kameda M (2017) Modified application of algebraic reconstruction technique to near-field background-oriented schlieren images for three-dimensional flows. Trans Jpn Soc Aeronaut Sp Sci 60(2):85–92

    Article  Google Scholar 

  • Hayasaka K, Tagawa Y, Liu T, Kameda M (2016) Optical-flow-based background-oriented schlieren technique for measuring a laser-induced underwater shock wave. Exp Fluids 57(12):179

    Article  Google Scholar 

  • Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203

    Article  Google Scholar 

  • Iffa ED, Aziz ARA, Malik AS (2010) Concentration measurement of injected gaseous fuel using quantitative schlieren and optical tomography. J Eur Opt Soc Rapid Publ 5

  • Ihrke I, Ziegler G, Tevs A, Theobalt C, Magnor M, Seidel HP (2007) Eikonal rendering: Efficient light transport in refractive objects. ACM Trans Gr 26(3):59

    Article  Google Scholar 

  • Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) Flownet 2.0: Evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2462–2470

  • Jonassen DR, Settles GS, Tronosky MD (2006) Schlieren “PIV”for turbulent flows. Opt Lasers Eng 44(3–4):190–207

    Article  Google Scholar 

  • Kirby R (2018) Tomographic background-oriented schlieren for three-dimensional density field reconstruction in asymmetric shock-containing jets. In: 2018 AIAA aerospace sciences meeting, p 0008

  • Lang HM, Oberleithner K, Paschereit CO, Sieber M (2017) Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography. Exp Fluids 58(7):88

    Article  Google Scholar 

  • Lanzillotta L, Léon O, Donjat D, Le Besnerais G (2019) 3D density reconstruction of a screeching supersonic jet by synchronized multi-camera background oriented schlieren. In: 8th European conference for aeronautics and space sciences

  • Leopold F, Ota M, Klatt D, Maeno K (2013) Reconstruction of the unsteady supersonic flow around a spike using the colored background oriented schlieren technique. J Flow Control Meas Visualization

  • Liu T, Merat A, Makhmalbaf M, Fajardo C, Merati P (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images. Exp Fluids 56(8):166

    Article  Google Scholar 

  • Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings DARPA image understanding workshop, pp 121–130

  • Meier G (2002) Computerized background-oriented schlieren. Exp Fluids 33(1):181–187

    Article  Google Scholar 

  • Meier W, Keck O, Noll B, Kunz O, Stricker W (2000) Investigations in the TECFLAM swirling diffusion flame: laser Raman measurements and CFD calculations. Appl Phys B 71(5):725–731

    Article  Google Scholar 

  • Mohri K, Görs S, Schöler J, Rittler A, Dreier T, Schulz C, Kempf A (2017) Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence. Appl Opt 56(26):7385–7395

    Article  Google Scholar 

  • Nicolas F, Donjat D, Léon O, Le Besnerais G, Champagnat F, Micheli F (2017a) 3D reconstruction of a compressible flow by synchronized multi-camera BOS. Exp Fluids 58(5):46

    Article  Google Scholar 

  • Nicolas F, Donjat D, Plyer A, Champagnat F, Le Besnerais G, Micheli F, Cornic P, Le Sant Y, Deluc J (2017b) Experimental study of a co-flowing jet in ONERA’s F2 research wind tunnel by 3D background oriented schlieren. Meas Sci Technol 28(8):085302

    Article  Google Scholar 

  • Nicolas F, Todoroff V, Plyer A, Le Besnerais G, Donjat D, Micheli F, Champagnat F, Cornic P, Le Sant Y (2016) A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements. Exp Fluids 57(1):13

    Article  Google Scholar 

  • Nicolas F, Donjat D, Micheli F, Le Besnerais G, Plyer A, Cornic P, Champagnat F, Michou Y (2018) Experimental study of a counter-flow jet in ONERA’s S1MA wind tunnel by 3D background oriented schlieren. In: Proceedings 18th international symposium on flow visualization

  • Ozawa RW, Cox TJ, Ahmed K (2018) Three-dimensional measurements of supersonic flow using tomographic background oriented schlieren. In: 2018 AIAA aerospace sciences meeting, p 1622

  • Papenberg N, Bruhn A, Brox T, Didas S, Weickert J (2006) Highly accurate optic flow computation with theoretically justified warping. Int J Comput Vis 67(2):141–158

    Article  Google Scholar 

  • Pettit M, Coriton B, Gomez A, Kempf A (2011) Large-eddy simulation and experiments on non-premixed highly turbulent opposed jet flows. Proc Combust Inst 33(1):1391–1399

    Article  Google Scholar 

  • Proch F, Kempf AM (2014) Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust Flame 161(10):2627–2646

    Article  Google Scholar 

  • Qin X, Xiao X, Puri IK, Aggarwal SK (2002) Effect of varying composition on temperature reconstructions obtained from refractive index measurements in flames. Combust Flame 128(1–2):121–132

    Article  Google Scholar 

  • Raffel M (2015) Background-oriented schlieren (BOS) techniques. Exp Fluids 56(3):60

    Article  Google Scholar 

  • Raffel M, Tung C, Richard H, Yu Y, Meier G (2000) Background oriented stereoscopic schlieren (BOSS) for full scale helicopter vortex characterization. In: 9th International symposium on flow visualization, pp 23–24

  • Rajendran LK, Zhang J, Bhattacharya S, Bane SP, Vlachos PP (2019) Uncertainty quantification in density estimation from background oriented schlieren (BOS) measurements. arXiv preprint arXiv:190906643

  • Ramanah D, Mee D (2006) Scramjet flow visualization using background oriented schlieren in hypersonic impulse facilities. In: 14th AIAA/AHI space planes and hypersonic systems and technologies conference, p 8004

  • Ramanah D, Raghunath S, Mee D, Rösgen T, Jacobs P (2007) Background oriented schlieren for flow visualisation in hypersonic impulse facilities. Shock Waves 17(1–2):65–70

    Article  Google Scholar 

  • Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32

    Article  Google Scholar 

  • Röder M, Dreier T, Schulz C (2013) Simultaneous measurement of localized heat-release with OH/CH\(_2\)O-LIF imaging and spatially integrated OH* chemiluminescence in turbulent swirl flames. Proc Combust Inst 34(2):3549–3556

    Article  Google Scholar 

  • Schmidt B, Sutton J (2019) High-resolution velocimetry from tracer particle fields using a wavelet-based optical flow method. Exp Fluids 60(3):37

    Article  Google Scholar 

  • Schneider C, Dreizler A, Janicka J (2005) Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul Combust 74(1):103–127

    Article  MATH  Google Scholar 

  • Settles GS (2001) Schlieren and shadowgraph techniques: Visualizing phenomena in transparent media. Springer, Berlin

    Book  MATH  Google Scholar 

  • Settles GS, Hargather MJ (2017) A review of recent developments in schlieren and shadowgraph techniques. Meas Sci Technol 28(4):042001

    Article  Google Scholar 

  • Singh B, Rajendran LK, Bane SP, Vlachos P (2018) Characterization of fluid motion induced by nanosecond spark plasmas: Using particle image velocimetry and background oriented schlieren. In: 2018 AIAA aerospace sciences meeting, p 0680

  • Twynstra MG, Daun KJ, Waslander SL (2014) Line-of-sight-attenuation chemical species tomography through the level set method. J Quant Spectrosc Radiat Transf 143:25–34

    Article  Google Scholar 

  • Venkatakrishnan L, Meier G (2004) Density measurements using the background oriented schlieren technique. Exp Fluids 37(2):237–247

    Article  Google Scholar 

  • Venkatakrishnan L, Suriyanarayanan P (2009) Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of BOS data. Exp Fluids 47(3):463–473

    Article  Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8(12):1379–1392

    Article  Google Scholar 

  • Winter KO, Hargather MJ (2019) Three-dimensional shock wave reconstruction using multiple high-speed digital cameras and background-oriented schlieren imaging. Exp Fluids 60(6):93

    Article  Google Scholar 

  • Zille P, Corpetti T, Shao L, Chen X (2014) Observation model based on scale interactions for optical flow estimation. IEEE Trans Image Process 23(8):3281–3293

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Andreas Rittler and Prof. Khadijeh Mohri for their assistance with the swirl flame phantom. The authors also gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Grauer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grauer, S.J., Steinberg, A.M. Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography. Exp Fluids 61, 80 (2020). https://doi.org/10.1007/s00348-020-2912-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-2912-1

Navigation