Skip to main content

Advertisement

Log in

Anaerobic Digestion of Napier Grass (Pennisetum purpureum) in Two-Phase Dry Digestion System Versus Wet Digestion System

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Napier grass (Pennisetum purpureum) is a high yield tropical grass with great potential for anaerobic digestion. Two-phase anaerobic dry digestion (TADD), considered an alternative for anaerobic wet digestion system (AWD) with only front-end leach bed reactor (LBR), is added to existing liquid digester, was tested under different leachate circulations, and was compared with AWD. Leachate circulation frequency in LBR was found to highly influence hydrolysis rate and hence improved overall digestibility of the grass fiber. Additional methane yield of 32.5% was achieved when leachate circulation increased from 1 to 4 times per day and diminished to merely 13.7% more at continuous circulation. A shift in methane generation from leachate digester to LBR as digestion time progressed and important biochemical characteristics were discussed. In AWD, operation at an organic loading of 4 kgVS/m3 d gave the highest methane yield at 145.2 m3/tondry, which is 2.3 times higher than TADD due to an advantage in mass transfer in a total wet environment. This work had advanced our understandings on phase separation in anaerobic digestion system and the key methanation performance among dry and wet digestions of the prototypical lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

ADD:

Anaerobic dry digestion

ALK:

Alkalinity

AWD:

Anaerobic wet digestion

BMP:

Biochemical methane potential

COD:

Chemical oxygen demand

CSTR:

Continuously stirred tank reactor

HAc:

Acetic acid

HBr:

Butyric acid

HHV:

Higher heating value

HPr:

Propionic acid

HRT:

Hydraulic retention time

LBR:

Leach bed reactor

LD:

Leachate digester

OLR:

Organic loading rate

R1:

Dry digestion system under leachate circulation one time/day

R4:

Dry digestion system under leachate circulation four times/day

Rcont:

Dry digestion system under continuous leachate circulation

SCOD:

Soluble chemical oxygen demand

TADD:

Two-phase anaerobic dry digestion

TMP:

Theoretical methane potential

TS:

Total solids

VFA:

Volatile fatty acid

VS:

Volatile solids

References

  1. IEA (2019) Global Energy and CO2 Status Report 2018

  2. MacLellan J, Chen R, Kraemer R, Zhong Y, Liu Y, Liao W (2013) Anaerobic treatment of lignocellulosic material to co-produce methane and digested fiber for ethanol biorefining. Bioresour Technol 130:418–423. https://doi.org/10.1016/j.biortech.2012.12.032

    Article  CAS  PubMed  Google Scholar 

  3. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044

    Article  CAS  PubMed  Google Scholar 

  4. Pandey A, Larroche C, Gnansounou E, Khanal SK, Dussap C-G, Ricke S (2019) Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Elsevier. https://doi.org/10.1016/C2018-0-00957-3

  5. Liu X, Du M, Yang J, Wu Y, Xu Q, Wang D, Yang Q, Yang G, Li X (2020) Sulfite serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Chem Eng J 385:123991. https://doi.org/10.1016/j.cej.2019.123991

    Article  CAS  Google Scholar 

  6. Sawatdeenarunat C, Nguyen D, Surendra KC, Shrestha S, Rajendran K, Oechsner H, Xie L, Khanal SK (2016) Anaerobic biorefinery: current status, challenges, and opportunities. Bioresour Technol 215:304–313. https://doi.org/10.1016/j.biortech.2016.03.074

    Article  CAS  PubMed  Google Scholar 

  7. Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223. https://doi.org/10.1002/bit.21386

    Article  CAS  PubMed  Google Scholar 

  8. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54

    Article  CAS  Google Scholar 

  9. Cherubini F, Strømman AH (2011) Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod Biorefin 5(5):548–561. https://doi.org/10.1002/bbb.297

    Article  CAS  Google Scholar 

  10. Sawasdee V, Pisutpaisal N (2014) Feasibility of biogas production from Napier grass. Energy Procedia 61:1229–1233. https://doi.org/10.1016/j.egypro.2014.11.1064

    Article  CAS  Google Scholar 

  11. Reddy KO, Maheswari CU, Shukla M, Rajulu AV (2012) Chemical composition and structural characterization of Napier grass fibers. Mater Lett 67(1):35–38. https://doi.org/10.1016/j.matlet.2011.09.027

    Article  CAS  Google Scholar 

  12. Wen B, Yuan X, Li QX, Liu J, Ren J, Wang X, Cui Z (2015) Comparison and evaluation of concurrent saccharification and anaerobic digestion of Napier grass after pretreatment by three microbial consortia. Bioresour Technol 175(0):102–111. https://doi.org/10.1016/j.biortech.2014.10.043

    Article  CAS  PubMed  Google Scholar 

  13. Mafuleka S, Kana EBG (2015) Modelling and optimization of xylose and glucose production from napier grass using hybrid pre-treatment techniques. Biomass Bioenergy 77:200–208. https://doi.org/10.1016/j.biombioe.2015.03.031

    Article  CAS  Google Scholar 

  14. Mitchell RB, Schmer MR, Anderson WF, Jin V, Balkcom KS, Kiniry J, Coffin A, White P (2016) Dedicated energy crops and crop residues for bioenergy feedstocks in the central and eastern USA. BioEnergy Research 9(2):384–398. https://doi.org/10.1007/s12155-016-9734-2

    Article  Google Scholar 

  15. Janejadkarn A, Chavalparit O 2014 Biogas production from Napier grass (Pak Chong 1) (Pennisetum purpureum× Pennisetum americanum). In: Advanced Materials Research,. Trans Tech Publ, pp 327–332. doi:https://doi.org/10.4028/www.scientific.net/AMR.856.327

  16. Sawatdeenarunat C, Nam H, Adhikari S, Sung S, Khanal SK (2018) Decentralized biorefinery for lignocellulosic biomass: integrating anaerobic digestion with thermochemical conversion. Bioresour Technol 250:140–147. https://doi.org/10.1016/j.biortech.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  17. Cui Z, Shi J, Li Y (2011) Solid-state anaerobic digestion of spent wheat straw from horse stall. Bioresour Technol 102(20):9432–9437. https://doi.org/10.1016/j.biortech.2011.07.062

    Article  CAS  PubMed  Google Scholar 

  18. Xu F, Li Y (2012) Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresour Technol 118:219–226. https://doi.org/10.1016/j.biortech.2012.04.102

    Article  CAS  PubMed  Google Scholar 

  19. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178(0):178–186. https://doi.org/10.1016/j.biortech.2014.09.103

    Article  CAS  PubMed  Google Scholar 

  20. Karthikeyan OP, Visvanathan C (2013) Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Biotechnol 12(3):257–284. https://doi.org/10.1007/s11157-012-9304-9

    Article  CAS  Google Scholar 

  21. Liew LN, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46(0):125–132. https://doi.org/10.1016/j.biombioe.2012.09.014

    Article  CAS  Google Scholar 

  22. Nizami A-S, Singh A, Murphy JD (2011) Design, commissioning, and start-up of a sequentially fed leach bed reactor complete with an upflow anaerobic sludge blanket digesting grass silage. Energy Fuel 25(2):823–834. https://doi.org/10.1021/ef101739d

    Article  CAS  Google Scholar 

  23. Wall DM, Allen E, O'Shea R, O'Kiely P, Murphy JD (2016) Investigating two-phase digestion of grass silage for demand-driven biogas applications: effect of particle size and rumen fluid addition. Renew Energy 86:1215–1223. https://doi.org/10.1016/j.renene.2015.09.049

    Article  CAS  Google Scholar 

  24. Thamsiriroj T, Nizami AS, Murphy JD (2012) Use of modeling to aid design of a two-phase grass digestion system. Bioresour Technol 110:379–389. https://doi.org/10.1016/j.biortech.2012.01.113

    Article  CAS  PubMed  Google Scholar 

  25. Krishania M, Vijay VK, Chandra R (2013) Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 57(0):359–367. https://doi.org/10.1016/j.energy.2013.05.028

    Article  CAS  Google Scholar 

  26. Moset V, Al-zohairi N, Møller HB (2015) The impact of inoculum source, inoculum to substrate ratio and sample preservation on methane potential from different substrates. Biomass Bioenergy 83:474–482. https://doi.org/10.1016/j.biombioe.2015.10.018

    Article  CAS  Google Scholar 

  27. Raposo F, Banks CJ, Siegert I, Heaven S, Borja R (2006) Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem 41(6):1444–1450. https://doi.org/10.1016/j.procbio.2006.01.012

    Article  CAS  Google Scholar 

  28. APHA, AWWA, WEFF (2005) Standard methods for the examination of water and wastewater. 21 edn., the United States of America

  29. DiLallo R, Albertson OE (1961) Volatile acids by direct titration. J Water Pollut Control Fed 33(4):356–365

    CAS  Google Scholar 

  30. AOAC (2006) Official methods of analysis neutral detergent fiber (NDF) calculation: NDF = cellulose + lignin + hemicellulose - item 90. In., 17th edn. Association of Analytical Communities, Gaithersburg, MD,

  31. El-Mashad HM, Zeeman G, van Loon WKP, Bot GPA, Lettinga G (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour Technol 95(2):191–201. https://doi.org/10.1016/j.biortech.2003.07.013

    Article  CAS  PubMed  Google Scholar 

  32. Yan H, Zhao C, Zhang J, Zhang R, Xue C, Liu G, Chen C (2017) Study on biomethane production and biodegradability of different leafy vegetables in anaerobic digestion. AMB Express 7(1):27. https://doi.org/10.1186/s13568-017-0325-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Symons G, Buswell A (1933) The methane fermentation of carbohydrates1, 2. J Am Chem Soc 55(5):2028–2036

    Article  CAS  Google Scholar 

  34. Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour Technol 102(20):9395–9402. https://doi.org/10.1016/j.biortech.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  35. Asam Z-u-Z, Poulsen TG, Nizami A-S, Rafique R, Kiely G, Murphy JD (2011) How can we improve biomethane production per unit of feedstock in biogas plants? Appl Energy 88(6):2013–2018. https://doi.org/10.1016/j.apenergy.2010.12.036

    Article  CAS  Google Scholar 

  36. Nizami A, Orozco A, Groom E, Dieterich B, Murphy J (2012) How much gas can we get from grass? Appl Energy 92:783–790. https://doi.org/10.1016/j.apenergy.2011.08.033

    Article  CAS  Google Scholar 

  37. Chanpla M, Kullavanijaya P, Janejadkarn A, Chavalparit O (2018) Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process. KSCE J Civ Eng 22(1):40–45. https://doi.org/10.1007/s12205-017-1164-y

    Article  Google Scholar 

  38. Al Seadi T, Lukehurst C (2012) Quality management of digestate from biogas plants used as fertiliser. IEA bioenergy 37:40

    Google Scholar 

  39. Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43(1):273–282. https://doi.org/10.1016/j.energy.2012.04.029

    Article  CAS  Google Scholar 

  40. Saritpongteeraka K, Chaiprapat S, Boonsawang P, Sung S (2015) Solid state co-fermentation as pretreatment of lignocellulosic palm empty fruit bunch for organic acid recovery and fiber property improvement. Int Biodeterior Biodegradation 100(0):172–180. https://doi.org/10.1016/j.ibiod.2015.03.001

    Article  CAS  Google Scholar 

  41. Liew LN, Shi J, Li Y (2011) Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresour Technol 102(19):8828–8834. https://doi.org/10.1016/j.biortech.2011.07.005

    Article  CAS  PubMed  Google Scholar 

  42. Hill D, Bolte J (1987) Using volatile fatty acid relationships to predict anaerobic digester failure. Trans. ASAE 30(2):502–0508

    Article  CAS  Google Scholar 

  43. Noyola A, Morgan-Sagastume JM, Lopez-Hernandez JE (2006) Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Rev Environ Sci Biotechnol 5(1):93–114. https://doi.org/10.1007/s11157-005-2754-6

    Article  CAS  Google Scholar 

  44. Low SC, Slatter P, Eshtiaghi N (2012) Hydrodynamics study of sludge in anaerobic digesters. Chem Eng 29:1321–1326. https://doi.org/10.3303/CET1229221

    Article  Google Scholar 

  45. Phuttaro C, Sawatdeenarunat C, Surendra KC, Boonsawang P, Chaiprapat S, Kumar Khanal S (2019) Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.03.114

  46. Hosokai S, Matsuoka K, Kuramoto K, Suzuki Y (2016) Modification of Dulong's formula to estimate heating value of gas, liquid and solid fuels. Fuel Process Technol 152:399–405. https://doi.org/10.1016/j.fuproc.2016.06.040

    Article  CAS  Google Scholar 

  47. Odedina MJ, Charnnok B, Saritpongteeraka K, Chaiprapat S (2017) Effects of size and thermophilic pre-hydrolysis of banana peel during anaerobic digestion, and biomethanation potential of key tropical fruit wastes. Waste Manag 68:128–138. https://doi.org/10.1016/j.wasman.2017.07.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding for this research was provided by Research and Researchers for Industries Program, the Thailand Research Fund (Grant No. PHD57I0032) for Dr. Sumate Chaiprapat, the Energy Policy and Planning Office (EPPO), Ministry of Energy, Thailand (Grant No. 063/2559) for Dr. Sumate Chaiprapat, and Graduate School of Prince of Songkla University. The authors would also like to thank Satun Animal Nutrition Development Station for Napier grass cultivation and harvesting and Liang Heng Lee Farm Co., Ltd. Songkhla, Thailand, for anaerobic inoculum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumate Chaiprapat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thaemngoen, A., Saritpongteeraka, K., Leu, SY. et al. Anaerobic Digestion of Napier Grass (Pennisetum purpureum) in Two-Phase Dry Digestion System Versus Wet Digestion System. Bioenerg. Res. 13, 853–865 (2020). https://doi.org/10.1007/s12155-020-10110-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10110-1

Keywords

Navigation