Skip to main content

Advertisement

Log in

Economic and Energy Valorization of Cassava Stalks as Feedstock for Ethanol and Electricity Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta) is a woody bush extensively cultivated as an annual crop in tropical and subtropical regions for its edible starchy tuberous root, a major source of carbohydrates. The main residue from its cultivation is the cassava stalk, which is normally used as soil fertilizer or in culture propagation. The main goal of this paper is to evaluate two routes (biochemical and thermochemical) for bioenergy production (ethanol and synthesis gas—electricity) using cassava stalk as raw material. A detailed techno-economic and energy assessment is carried out based on the simulation approach of both conversion routes to determine the production costs of main products and the overall energy efficiency of the processes. The electricity production costs vary from 0.008 to 0.037 USD/MJ, whereas the ethanol production costs range from 1.11 to 2.02 USD/L (including subsidies). The change in the production costs was observed due to the assumptions of the model, e.g., cassava stalk, transportation, and enzyme costs. The overall energy efficiency of the gasification and ethanol fermentation was 68.7 and 25.1%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sivamani S, Chandrasekaran AP, Balajii M, Shanmugaprakash M, Hosseini-Bandegharaei A, Baskar R (2018) Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Biotechnol 17:553–570. https://doi.org/10.1007/s11157-018-9475-0

    Article  CAS  Google Scholar 

  2. Food and Agriculture Organization of the United States (FAO) (2017) Production of Cassava in the World

  3. Ministerio de Agricultura y Desarrollo Rural (2017) Clúster de tubérculos en los departamentos de Bolívar, Córdoba y Sucre para las líneas productivas de Ñame, Yuca y Batata. Colombia

  4. Red de Información y Comunicación del Sector Agropecuario de Colombia (AGRONET) (2018) Cassava crop production in Colombia

  5. Tomei J, Helliwell R (2016) Food versus fuel? Going beyond biofuels. Land Use Policy 56:320–326. https://doi.org/10.1016/j.landusepol.2015.11.015

    Article  Google Scholar 

  6. Veiga JPS, Valle TL, Feltran JC, Bizzo WA (2016) Characterization and productivity of cassava waste and its use as an energy source. Renew Energy 93:691–699. https://doi.org/10.1016/j.renene.2016.02.078

  7. Klein C (2017) Handbook on cassava. Production, potential uses and recent advances. Nova Science Publisher Inc, New York

    Google Scholar 

  8. Okon A (2017) Prices of cassava stems drop to N400/bundle. In: Punch. https://punchng.com/prices-of-cassava-stems-drop-to-n400bundle/.

  9. Zhu W, Lestander TA, Örberg H et al (2015) Cassava stems: a new resource to increase food and fuel production. GCB Bioenergy 7:72–83. https://doi.org/10.1111/gcbb.12112

    Article  CAS  Google Scholar 

  10. Unidad de planeación Minero Energética (UPME) (2014) Law 1715 of 2014. Integration of non-conventional energy sources to the National Energetic System

    Google Scholar 

  11. Higueras D (2016) Law 1715. Friend of the stakeholders in renewable energies? Semana

  12. CONPES (2008) Lineamientos de la política para promover la producción sostenible de biocombustibles en Colombia. Departamento Nacional de Planeación, Bogotá

    Google Scholar 

  13. de la República de Colombia C (2001) Ley 693 of 2001 - normas sobre el uso de alcoholes carburantes. Ministerio de Minas y Energía. Bogotá, Colombia

    Google Scholar 

  14. Asocaña (2019) General issues of sugarcane agroindustry: 2018–2019 annual report. Asocaña

  15. García CA, Moncada J, Aristizábal Marulanda V, Cardona CA (2017) Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: coffee cut-stems. Int J Hydrog Energy 42:5849–5864. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.038

    Article  Google Scholar 

  16. Martín C, Wei M, Xiong S, Jönsson LJ (2017) Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment. Ind Crop Prod 97:21–31. https://doi.org/10.1016/j.indcrop.2016.11.067

    Article  CAS  Google Scholar 

  17. Wooley RJ, Putsche V (1996) Development of an ASPEN PLUS physical property database for biofuels components. Victoria:1–38

  18. Carolan J, Joshi S, Dale B (2007) Technical and financial feasibility analysis of distributed bioprocessing using regional biomass pre-processing centers. J Agric Food Ind Organ 5:1–29. https://doi.org/10.2202/1542-0485.1203

    Article  Google Scholar 

  19. Hedman B, Boström D, Zhu W et al (2015) Enhancing fuel qualities of cassava crop residues by washing. Fuel Process Technol 139:127–134. https://doi.org/10.1016/j.fuproc.2015.06.052

    Article  CAS  Google Scholar 

  20. Mayer FD, Gasparotto JM, Klauck E et al (2015) Conversion of cassava starch to ethanol and a byproduct under different hydrolysis conditions. Starch/Staerke 67:620–628. https://doi.org/10.1002/star.201500043

    Article  CAS  Google Scholar 

  21. Ranatunga TD, Jervis J, Helm RF et al (1997) Toxicity of hardwood extractives toward Saccharomyces cerevisiae glucose fermentation. Biotechnol Lett 19:1125–1127. https://doi.org/10.1023/A:1018400912828

    Article  CAS  Google Scholar 

  22. Han M, Kim Y, Kim Y et al (2011) Bioethanol production from optimized pretreatment of cassava stem. Korean J Chem Eng 28:119–125. https://doi.org/10.1007/s11814-010-0330-4

    Article  CAS  Google Scholar 

  23. Esquivia Mercado MB, Castaño Peláez HI, Atehortua Garcés L et al (2014) Producción de etanol a partir de yuca en condiciones de alta concentración de sólidos (VHG). Rev Colomb Biotecnol 16:163. https://doi.org/10.15446/rev.colomb.biote.v16n1.44284

    Article  Google Scholar 

  24. Pitt WW, Haag GL, Lee DD (1983) Recovery of ethanol from fermentation broths using selective sorption-desorption. Biotechnol Bioeng 25:123–131. https://doi.org/10.1002/bit.260250110

  25. Risovic S, Dukic I, Vuckovic K (2008) Energy analysis of pellets made of wood residues. Croat J for Eng i:95–108

  26. Baruah DCCD, Baruah DCCD (2014) Modeling of biomass gasification: a review. Renew Sust Energ Rev 39:806–815. https://doi.org/10.1016/j.rser.2014.07.129

    Article  CAS  Google Scholar 

  27. Zhu X, Venderbosch R (2005) A correlation between stoichiometrical ratio of fuel and its higher heating value. Fuel 84:1007–1010. https://doi.org/10.1016/j.fuel.2004.12.002

    Article  CAS  Google Scholar 

  28. García CA, Betancourt R, Cardona CA (2015) Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula. J Environ Manag. https://doi.org/10.1016/j.jenvman.2016.04.001

  29. García CA, Peña Á, Betancourt R, Cardona CA (2017) Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: coffee cut-stems case. J Environ Manag. https://doi.org/10.1016/j.jenvman.2017.04.029

  30. Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers. McGraw-Hill, Fourth

    Google Scholar 

  31. Supply Corporation of Colombia (CORABASTOS) (2018) National market price of Cassava in Colombia. www.corabastos.com.co.

  32. Jaller M (2006) Optimización de la cadena de valor del bio-etanol a partir de la caña de azúcar y la yuca. Universidad del Norte, Colombia

  33. Ulrich GD, Vasudevan PT (2006) How to estimate utility costs. Chem Eng 113:66–69

    Google Scholar 

  34. Unidad de Planeación Minero - Energética (UPME) (2018) Energetic balance of Colombia. http://www1.upme.gov.co.

  35. Linstrom PJ, Mallard WG (1998) NIST chemistry Webbook. Choice Rev Online 35:35–2709–35–2709. https://doi.org/10.5860/CHOICE.35-2709

  36. Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101:4754–4766. https://doi.org/10.1016/j.biortech.2009.10.097

    Article  CAS  PubMed  Google Scholar 

  37. Moncada J, Cardona CA, Higuita JC et al (2016) Wood residue (Pinus patula bark) as an alternative feedstock for producing ethanol and furfural in Colombia: experimental, techno-economic and environmental assessments. Chem Eng Sci 140:309–318. https://doi.org/10.1016/j.ces.2015.10.027

    Article  CAS  Google Scholar 

  38. García-Velásquez CA (2016) Hydrogen production through gasification and dark fermentation. National University of Colombia, Colombia

  39. Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Biorefin 10:164–174. https://doi.org/10.1002/bbb

    Article  CAS  Google Scholar 

  40. Kalmanovitz S (2018) Gasoline price. El Espectador

    Google Scholar 

  41. Foust TD, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16:547–565. https://doi.org/10.1007/s10570-009-9317-x

    Article  CAS  Google Scholar 

  42. Gobierno de Colombia, INNpulsa (2018) Cluster initiatives in Colombia. Instruments for economical development and competitiveness., First. Colombian Government, Bogotá, Colombia

  43. Gobierno de Colombia (2016) Summary of Colombia’s Peace Agreement, to End Conflict and Build Peace

  44. Ministerio de Agricultura y Desarrollo Rural (2017) Lineamientos estratégicos de política pública para la Agricultura Campesina, Familiar y Comunitaria - Resolution 464 of 2017. Bogotá, Colombia

  45. CONPES (2018) Estrategia para la implementación de los Objetivos de Desarrollo Sostenible (ODS) en Colombia - Documento Conpes 3918. Bogotá, Colombia

    Google Scholar 

  46. Aguilar E, Segreda A, Morales J et al (2017) Cassava crop manual (Manihot esculenta Crantz). San José, Costa Rica

    Google Scholar 

Download references

Funding

The Universidad Nacional de Colombia Sede Manizales and the Dirección Nacional de Investigación (DIMA) financially supported this work through the project “entitled “Contrapartida Vicerrectoria de Investigación 2016 – 2018” Grant No. 201010013030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Cardona.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Velásquez, C.A., Daza, L. & Cardona, C.A. Economic and Energy Valorization of Cassava Stalks as Feedstock for Ethanol and Electricity Production. Bioenerg. Res. 13, 810–823 (2020). https://doi.org/10.1007/s12155-020-10098-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10098-8

Keywords

Navigation