Skip to main content
Log in

Consignment supply chain cooperation for complementary products under online to offline business mode

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

The purpose of this paper is to explore the cooperation issues in a consignment supply chain with complementary products under Online to Offline Business Mode (O2O mode). The centralized, decentralized and cooperative game-theoretic decision models are developed, analyzed and compared for a generic consignment supply chain with complementary products under O2O mode. Similar models are also developed for that under pure online- and offline-channel modes for comparison purpose. The corresponding numerical and sensitivity analyses are conducted to validate the analytical findings and derive managerial insights. It is found that the cooperative strategy always creates many more profits for the supply chain by setting a much lower retail price and generating much more demands than those of the decentralized strategies. The best supply chain strategy for a consignment supply chain with complementary products sold through both online and offline channels is identified as the cooperative strategy. An extensive sensitivity analysis of seven key parameters on an O2O cooperative decision model has derived several insightful findings for the O2O consignment supply chain practitioners with complementary products. These managerial insights will facilitate better decision-making for the O2O retailers and their complementary suppliers. Since the cooperation of a consignment supply chain under O2O mode with complementary products is a fresh research domain, there are more research issues to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ailawadi KL, Farris PW (2017) Managing multi-and omni-channel distribution: metrics and research directions. J Retail 93(1):120–135

    Google Scholar 

  • Andrus A (2018) Amazon fulfillment: is amazon FBA worth the cost? Disruptive Advertising, June 28, 2018. [EB/OL]. https://www.disruptiveadvertising.com/ppc/ecommerce/amazon-fulfillment/. Accessed 25 Feb 2019

  • Beck N, Rygl D (2015) Categorization of multiple channel retailing in multi-, cross-, and omni-channel retailing for retailers and retailing. J Retail Consum Serv 27:170–178

    Google Scholar 

  • Bell DR, Gallino S, Moreno A (2018) Offline showrooms in omnichannel retail: demand and operational benefits. Manag Sci 64(4):1629–1651

    Google Scholar 

  • Bertrand J (1883) Revue de la Theorie Mathematique de la Richesse Sociate et des Recherches sur ies Principles Mathematiques de ta Theorie des Richesses. Journat des Savants 67:499–508

    Google Scholar 

  • Bhaskaran SR, Gilbert SM (2005) Selling and leasing strategies for durable goods with complementary products. Manag Sci 51(8):1278–1290

    Google Scholar 

  • Binmore KG, Rubinstein A, Wolinsky A (1986) The Nash bargaining solution in economic modeling. Rand J Econ 17(2):176–188

    Google Scholar 

  • Blom A, Lange F, Hess RL Jr (2017) Omnichannel-based promotions’ effects on purchase behavior and brand image. J Retail Consum Serv 39:286–295

    Google Scholar 

  • Cai G (2010) Channel selection and coordination in dual-channel supply chains. J Retail 86(1):22–36

    Google Scholar 

  • Cai G, Dai Y, Zhou SX (2012) Exclusive channels and revenue sharing in a complementary goods market. Market Sci 31(1):172–187

    Google Scholar 

  • Chen LT (2013) Dynamic supply chain coordination under consignment and vendor-managed inventory in retailer-centric B2B electronic markets. Ind Mark Manag 42(4):518–531

    Google Scholar 

  • Chen J, Zhang H, Sun Y (2012) Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain. Omega 40(5):571–583

    Google Scholar 

  • Chen X, Wang X, Jiang X (2016) The impact of power structure on the retail service supply chain with an O2O mixed channel. J Oper Res Soc 67(2):294–301

    Google Scholar 

  • Chen Z, Fang L, Su SI (2019) The value of offline channel subsidy in bricks and clicks: an O2O supply chain coordination perspective. Electron Commer Res. https://doi.org/10.1007/s10660-019-09386-z

    Article  Google Scholar 

  • Dan B, Xu G, Liu C (2012) Pricing policies in a dual-channel supply chain with retail services. Int J Prod Econ 139(1):312–320

    Google Scholar 

  • Dixon H (1984) The existence of mixed-strtaegy equilibria in a price-setting oligopoly with convex costs. Econ Lett 16:205–212

    MATH  Google Scholar 

  • Duggan W (2015) What does O2O mean for the future of e-commerce? Yahoo Finance, August 17, 2015

  • Dzyabura D, Jagabathula S (2018) Offline assortment optimization in the presence of an online channel. Manag Sci 64(6):2767–2786

    Google Scholar 

  • Edgeworth F (1925) The pure theory of monopoly. Collected papers relating to political economy, vol 1. Macmillan, New York

    Google Scholar 

  • Gao F, Su X (2016a) Omnichannel retail operations with buy-online-and-pick-up-in-store. Manag Sci 63(8):2478–2492

    Google Scholar 

  • Gao F, Su X (2016b) Online and offline information for omnichannel retailing. Manuf Serv Oper Manag 19(1):84–98

    Google Scholar 

  • He Y, Yin S (2015) Joint selling of complementary components under brand and retail competition. Manuf Serv Oper Manag 17(4):427–619

    Google Scholar 

  • Hu B, Meng C, Xu D, Son YJ (2018) Supply chain coordination under vendor managed inventory-consignment stocking contracts with wholesale price constraint and fairness. Int J Prod Econ 202:21–31

    Google Scholar 

  • IKEA (2019) Ecommerce: unser business geschieht online. [EB/OL].https://m2.ikea.com/de/de/working-at-the-ikea-group/ecommerce-pub5cc20d61. Accessed 25 Feb 2019

  • Investopedia (2018) Online-to-Offline Commerce. [EB/OL]. https://www.investopedia.com/terms/o/onlinetooffline-commerce.asp. Accessed 25 Feb 2019

  • Kalai E, Smorodinsky M (1975) Other solutions to Nash’s bargaining problem. Econometrica 43(3):513–518

    MathSciNet  MATH  Google Scholar 

  • Kong L, Liu Z, Pan Y, Xie J, Yang G (2017) Pricing and service decision of dual-channel operations in an O2O closed-loop supply chain. Ind Manag Data Syst 117(8):1567–1588

    Google Scholar 

  • Kumar A, Mehra A, Kumar S (2019) Why do stores drive online sales? Evidence of underlying mechanisms from a multichannel retailer. Inf Syst Res 30(1):319–338

    Google Scholar 

  • Lariviere MA (2006) A note on probability distributions with increasing generalized failure rates. Oper Res 54(3):602–604. https://doi.org/10.1287/opre.1060.0282

    Article  MathSciNet  MATH  Google Scholar 

  • Lariviere MA, Porteus EL (2001) Selling to the newsvendor: an analysis of price-only contracts. Manuf Serv Oper Manag 3(4):293–305

    Google Scholar 

  • Li S, Zhu Z, Huang L (2009) Supply chain coordination and decision making under consignment contract with revenue sharing. Int J Prod Econ 120(1):88–99

    Google Scholar 

  • Lim YF, Wang Y, Wu Y (2015) Consignment contracts with revenue sharing for a capacitated retailer and multiple manufacturers. Manuf Serv Oper Manag 17(4):427–619

    Google Scholar 

  • Low E (2018) Walmart earnings top as ecommerce sales growth accelerates, investors, November 16, 2018. Accessed 25 Feb 2019

  • Mondal C, Giri BC, Maiti T (2019) Pricing and greening strategies for a dual-channel closed-loop green supply chain. Flex Serv Manuf J. https://doi.org/10.1007/s10696-019-09355-6

    Article  Google Scholar 

  • Muthoo A (1999) Bargaining theory with applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Narang U, Shankar V (2019) Mobile app introduction and online and offline purchases and product returns. Market Sci 38(5):756–772

    Google Scholar 

  • Nash JF (1950) The bargaining problem. Econometrica 18(2):155–162

    MathSciNet  MATH  Google Scholar 

  • Nash JF (1951) Non-cooperative games. Ann Math 54(2):286–295

    MathSciNet  MATH  Google Scholar 

  • Orendorff A (2018) “O2O commerce: conquering online-to-offline retail’s trillion dollar opportunity”, May 21, 2018. https://www.shopify.com/enterprise/o2o-online-to-offline-commerce. Accessed 20 Aug 2018

  • Petruzzi NC, Dada M (1999) Pricing and the newsvendor problem: a review with extensions. Oper Res 47(2):183–194. https://doi.org/10.1287/opre.47.2.183

    Article  MATH  Google Scholar 

  • Salop S, Stiglitz J (1977) Bargains and ripoffs: a model of monopolistically competitive price dispersion. Rev Econ Stud 44:493–510

    MATH  Google Scholar 

  • Sinitsyn M (2012) Coordination of price promotions in complementary categories. Manag Sci 58(11):2076–2094

    Google Scholar 

  • Trotter C (2018) Top 45 online retailers who went offline. Insider trends: June 29, 2018. [EB/OL]. https://www.insider-trends.com/top-45-online-retailers-who-went-offline/. Accessed 29 Jan 2019

  • Verhoef PC, Kannan PK, Inman JJ (2015) From multi-channel retailing to omni-channel retailing: introduction to the special issue on multi-channel retailing. J Retail 91(2):174–181

    Google Scholar 

  • von Neumann J (1944) Theory of games and economic behavior. Princeton University Press, Princeton, New Jersey

    MATH  Google Scholar 

  • Wallace T (2019) The 2019 omni-channel retail report: generational consumer shopping behavior comes into focus. [EB/OL]. https://www.bigcommerce.com/blog/omni-channel-retail. Accessed 25 Feb 2019

  • Wang Y (2006) Joint pricing-production decisions in supply chains of complementary products with uncertain demand. Oper Res 54(6):1110–1127

    MATH  Google Scholar 

  • Wang Y, Jiang L, Shen ZJ (2004) Channel performance under consignment contract with revenue sharing. Manag Sci 50(1):34–47

    MATH  Google Scholar 

  • Weinswig D (2017) Channel swaps: walmart online vs. amazon offline. [EB/OL] http://www.deborahweinswig.com/uncategorized/channel-swaps-walmart-online-vs-amazon-offline/ Posted on December 1, 2017. Accessed 25 Feb 2019

  • Wu Z, Yu H, Chen D (2016) Coordination of a supply chain with consumer return under vendor-managed consignment inventory and stochastic demand. Int J Gen Syst 45(5):502–516

    MathSciNet  MATH  Google Scholar 

  • Xu G, Dan B, Zhang X et al (2014) Coordinating a dual-channel supply chain with risk-averse under a two-way revenue sharing contract. Int J Prod Econ 147(1):171–179

    Google Scholar 

  • Yan R, Pei Z, Ghose S (2018) Reward points, profit sharing, and valuable coordination mechanism in the O2O era. International Journal of Production Economics, (in press), Corrected Proof, Available online 3 July 2018

  • Yin S (2010) Alliance formation among perfectly complementary suppliers in a price-sensitive assembly system. Manuf Serv Oper Manag 12(3):527–544

    Google Scholar 

  • Zhang J, Chen H, Wu X (2015a) Operation models in O2O supply chain when existing competitive service level. Int J u- e- Serv Sci Technol 8(9):279–290

    Google Scholar 

  • Zhang J, Chen H, Ma J, Tang K (2015b) How to coordinate supply chain under O2O business model when demand deviation happens. Manag Sci Eng 9(3):24–28

    Google Scholar 

  • Zhao F, Wu D, Liang L, Dolgui A (2016) Lateral inventory transshipment problem in online-to-offline supply chain. Int J Prod Res 54(7):1951–1963

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 71603125, 71433003), China Scholarship Council (Grant No. 201706865020), the National Key R&D Program of China (Grant No. 2017YFC0404600), the Natural Science Research Project of Colleges and Universities in Jiangsu Province (Grant No. 15KJB110012), the Key project of Social Science Foundation of Jiangsu Province (Grant No. 18EYA002), Young Leading Talent Program of Nanjing Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisong Chen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proofs for Sect. 4.1

1.1 Centralized decision model

When the consignment supply chain with complementary products under O2O mode takes a centralized strategy, the optimal profit function of the supply chain can be formulated as follows:

$$\mathop {\hbox{max} }\limits_{p,z} \;\varPi_{SC}^{o} \left( {p,z} \right) = y_{o} \left( p \right)\left\{ {pE\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - c_{o} z} \right\}$$

When the distribution of random variable x satisfies the IGFR condition, the first order conditions \(\left( {p_{c}^{o} ,z_{c}^{o} } \right)\) determine a unique solution to the above optimization problem. Solving the first-order condition of the optimization profit function with respect to the retail price \(p\) and the stock factor \(z\):

$$\frac{{\partial \varPi_{SC} \left( {p,z} \right)}}{\partial z} = y\left( p \right)\left[ {\left( {p - c_{o} } \right) - pF\left( z \right)} \right] = 0$$
$$\frac{{\partial \varPi_{SC} \left( {p,z} \right)}}{\partial p} = \frac{y\left( p \right)}{p}\left\{ {\left( {b - \theta } \right)c_{o} z - \left( {b - \theta - 1} \right)p\left[ {z - {\rm M}\left( z \right)} \right]} \right\} = 0$$

where \({\rm M}\left( z \right) = \int_{A}^{z} {\left( {z - x} \right)f\left( x \right)dx}\)

Then, we can get the optimal total retail price and the distribution function of the centralized optimal stock factor as follows:

$$p_{c}^{o} = \frac{b - \theta }{b - \theta - 1}\frac{{c_{o} z_{c}^{o} }}{{z_{c}^{o} - {\rm M}\left( {z_{c}^{o} } \right)}}$$
$$F\left( {z_{c}^{o} } \right) = \frac{{p_{c}^{o} - c_{o} }}{{p_{c}^{o} }} = \frac{1}{b - \theta } + \frac{{\left( {b - \theta - 1} \right){\rm M}\left( {z_{c}^{o} } \right)}}{{\left( {b - \theta } \right)z_{c}^{o} }}$$

where \({\rm M}\left( {z_{c}^{o} } \right) = \int_{A}^{{z_{c}^{o} }} {\left( {z_{c}^{o} - x} \right)f\left( x \right)dx}\)

By observing the structure of the optimal total retail price, it shows that there is a positive relationship between the optimal total retail price \(p_{c}^{o}\) and the total channel cost \(c_{o}\). Thus, the optimal retail price of the ith product should have the same structure and the relationship between the optimal retail price of the ith product \(p_{i}^{oc}\) and the corresponding proportion of the total channel cost \(\frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}c_{o}\). Thus, we can get the optimal retail price of the ith product as follows:

$$p_{i}^{oc} = \frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}p_{c}^{o}$$

Then, we can have the centralized optimal order quantity as follows:

$$q_{c}^{o} = y_{o} \left( {p_{c}^{o} } \right)z_{c}^{o}$$

Substituting the optimal retail price \(p_{c}^{o}\) and the optimal stock factor \(z_{c}^{o}\) into the profit function of the centralized consignment supply chain under O2O mode, we can obtain the optimal profit of the consignment supply chain as follows:

$$\varPi_{SC}^{oc} = \frac{{c_{o} q_{c}^{o} }}{b - \theta - 1}$$

1.2 Decentralized decision model

  1. (1)

    Suppliers’ Simultaneous Decision (SI)

The profit functions of the supplier i and the O2O retailer in the consignment supply chain under the revenue sharing contract can be formulated as follows:

$$\varPi_{{S_{i} }}^{o} \left( {p_{i} ,z} \right) = y_{o} \left( p \right)\left\{ {\left( {1 - \phi } \right)p_{i} E\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \alpha_{i} c_{o} z} \right\}$$
$$\varPi_{R}^{o} \left( \phi \right) = y_{o} \left( p \right)\left\{ {\phi pE\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)c_{o} z} \right\}$$

Solving the first-order condition of the supplier i’s optimization problem with respect to (w.r.t.) the retail price \(p_{i}\):

$$\frac{{\partial \varPi_{{S_{i} }} \left( {p_{i} ,z} \right)}}{{\partial p_{i} }} = \frac{y\left( p \right)}{p}\left\{ \begin{aligned} - \left( {b - \theta - 1} \right)\left( {1 - \phi } \right)p_{i} \left[ {z - {\rm M}\left( z \right)} \right] + \left( {b - \theta } \right)\alpha_{i} c_{o} z \hfill \\ + \left( {1 - \phi } \right)p_{ - i} \left[ {z - {\rm M}\left( z \right)} \right] \hfill \\ \end{aligned} \right\} = 0$$

where \({\rm M}\left( z \right) = \int_{A}^{z} {\left( {z - x} \right)f\left( x \right)dx}\)

We can obtain the reaction function of \(p_{i}\) and \(p_{ - i}\) w.r.t. \(z\) as follows:

$$p_{i}^{od} \left( z \right) = \frac{{\left( {b - \theta - n} \right)\alpha_{i} + \sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{b - \theta - n}\frac{{c_{o} z}}{{\left( {1 - \phi } \right)\left[ {z - {\rm M}\left( z \right)} \right]}}$$
$$p_{ - i}^{od} \left( z \right) = \frac{{\left( {b - \theta - 1} \right)\sum\nolimits_{i = 1}^{n} {\alpha_{i} } - \left( {b - \theta - n} \right)\alpha_{i} }}{b - \theta - n}\frac{{c_{o} z}}{{\left( {1 - \phi } \right)\left[ {z - {\rm M}\left( z \right)} \right]}}$$

Plugging \(p_{i}^{od} \left( z \right)\) and \(p_{ - i}^{od} \left( z \right)\) into supplier i’s expect profit function, we can get the supplier i’s optimal problem as follows:

$$\mathop {\hbox{max} }\limits_{z} \;\varPi_{{S_{i} }}^{o} \left( {p_{i}^{od} \left( z \right),p_{ - i}^{od} \left( z \right),z} \right) = y_{o} \left( {p_{i}^{od} \left( z \right),p_{ - i}^{od} \left( z \right)} \right)\left\{ {\left( {1 - \phi } \right)p_{i}^{od} \left( z \right) \cdot E\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \alpha_{i} c_{o} z} \right\}$$

Solving the first-order condition of the supplier i’s optimization problem w.r.t. the stock factor \(z\), we can obtain:

$$\begin{aligned} \frac{{d\varPi_{{S_{i} }}^{o} \left( {p_{i}^{od} \left( z \right)|p_{ - i}^{od} \left( z \right),z} \right)}}{dz} \hfill \\ = \frac{{\partial \varPi_{{S_{i} }}^{o} \left( {p_{i}^{od} \left( z \right)|p_{ - i}^{od} \left( z \right),z} \right)}}{\partial z} + \frac{{\partial \varPi_{{S_{i} }}^{o} \left( {p_{i}^{od} \left( z \right)|p_{ - i}^{od} \left( z \right),z} \right)}}{{\partial p_{ - i} }}\frac{{dp_{ - i}^{od} \left( z \right)}}{dz} + \frac{{\partial \varPi_{{S_{i} }}^{o} \left( {p_{i}^{od} \left( z \right)|p_{ - i}^{od} \left( z \right),z} \right)}}{{\partial p_{i} }}\frac{{dp_{i}^{od} \left( z \right)}}{dz} \hfill \\ = \frac{{y\left( p \right)c_{s} }}{{\left( {b - \theta - n} \right)\left[ {z - {\rm M}\left( z \right)} \right]}}\left[ {z + \left( {b - \theta - 1} \right){\rm M}\left( z \right) - \left( {b - \theta } \right)zF\left( z \right)} \right] = 0 \hfill \\ \end{aligned}$$

Let \(L\left( z \right) = z + \left( {b - \theta - 1} \right){\rm M}\left( z \right) - \left( {b - \theta } \right)zF\left( z \right)\)

For any \(z \in \left[ {A,B} \right)\), solving the first derivative of \(L\left( z \right)\) w.r.t. \(z\):

$$L^{'} \left( z \right) = \left[ {1 - F\left( z \right)} \right]\left[ {1 - \left( {b - \theta } \right)g\left( z \right)} \right]$$

According to IGFR assumption, \(g^{'} \left( z \right) = h\left( z \right) + zh^{'} \left( z \right) > 0\), i.e., \(g\left( z \right)\) is increasing in \(z\), and thus \(L\left( z \right)\) is decreasing in \(z\). Then, \(L^{'} \left( z \right)\) crosses 0 at most once (from positive to negative). Since \(L\left( A \right) = A > 0\), \(L\left( B \right) = - \left( {b - \theta - 1} \right)\mu < 0\), the first derivative \(L^{'} \left( z \right)\) either is always negative or changes from positive to negative. Thus, \(L\left( z \right)\) crosses 0 exactly once, from positive to negative. Therefore, the equation \(L\left( z \right) = 0\) has a unique solution.

Therefore, the distribution function of the equilibrium stock factor as follows:

$$F\left( {z_{d}^{o} } \right) = \frac{1}{b - \theta } + \frac{{\left( {b - \theta - 1} \right){\rm M}\left( {z_{d}^{o} } \right)}}{{\left( {b - \theta } \right)z_{d}^{o} }} = F\left( {z_{c}^{o} } \right)$$

On this basis, we can get the supplier’s reaction function of equilibrium retail price of product i w.r.t. the revenue keeping rate, the reaction function of total equilibrium retail price of product set w.r.t. the revenue keeping rate, and the distribution function of the equilibrium stock factor as follows:

$$p_{i}^{od} \left( \phi \right) = \frac{{\left( {b - \theta - n} \right)\alpha_{i} + \sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{b - \theta - n}\frac{{c_{o} z_{c}^{o} }}{{\left( {1 - \phi } \right)\left[ {z_{c}^{o} - {\rm M}\left( {z_{c}^{o} } \right)} \right]}} = \frac{{\left( {b - \theta - 1} \right)\left[ {\left( {b - \theta - n} \right)\alpha_{i} + \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right]}}{{\left( {b - \theta } \right)\left( {b - \theta - n} \right)\left( {1 - \phi } \right)}}p_{c}^{o}$$
$$p_{d}^{o} \left( \phi \right) = \frac{{\left( {b - \theta } \right)\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{b - \theta - n}\frac{{c_{o} z_{c}^{o} }}{{\left( {1 - \phi } \right)\left[ {z_{c}^{o} - {\rm M}\left( {z_{c}^{o} } \right)} \right]}} = \frac{{\left( {b - \theta - 1} \right)\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{{\left( {b - \theta - n} \right)\left( {1 - \phi } \right)}}p_{c}^{o}$$
$$F\left( {z_{d}^{o} } \right) = F\left( {z_{c}^{o} } \right)$$

Then, we have the reaction function of the decentralized equilibrium order quantity of product set w.r.t. the revenue keeping rate as follows:

$$q_{d}^{o} \left( \phi \right) = a\left( {p_{d}^{o} } \right)^{{ - \left( {b - \theta } \right)}} z_{d}^{o} = \left[ {\frac{{\left( {b - \theta - n} \right)\left( {1 - \phi } \right)}}{{\left( {b - \theta - 1} \right)\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}} \right]^{b - \theta } a\left( {p_{c}^{o} } \right)^{{ - \left( {b - \theta } \right)}} z_{c}^{o} = \frac{{\left( {b - \theta - n} \right)^{b - \theta } \left( {1 - \phi } \right)^{b - \theta } }}{{\left( {b - \theta - 1} \right)^{b - \theta } \left( {\sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)^{b - \theta } }}q_{c}^{o}$$

Substituting \(p_{d}^{o} \left( \phi \right)\) and \(z_{d}^{o}\) into the O2O retailer’s expected profit function, we can obtain the O2O retailer’s optimal problem as follows:

$$\begin{aligned} \mathop {\hbox{max} }\limits_{\phi } \;\varPi_{R}^{o} \left( \phi \right) = y_{o} \left( {p_{d}^{o} \left( \phi \right)} \right)\left\{ {\phi p_{d}^{o} \left( \phi \right)\left[ {z_{d}^{o} - {\rm M}\left( {z_{d}^{o} } \right)} \right] - \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)c_{o} z_{d}^{o} } \right\} \hfill \\ = c_{o} q_{c}^{o} \left[ {\frac{b - \theta - n}{{\left( {b - \theta - 1} \right)\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}} \right]^{b} \left( {1 - \phi } \right)^{b} \left[ {\frac{\phi }{1 - \phi }\frac{{\left( {b - \theta } \right)\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{b - \theta - n} - \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right] \hfill \\ \end{aligned}$$

Solving the first-order condition of the O2O retailer’s profit function w.r.t. the revenue keeping rate \(\phi\):

$$\frac{{d\varPi_{R} \left( \phi \right)}}{d\phi } = \frac{{\left( {b - \theta } \right)c_{o} q_{c}^{o} \left( {1 - \phi } \right)^{b - \theta - 2} \left( {b - \theta - n} \right)^{b - \theta - 1} }}{{\left( {b - \theta - 1} \right)^{b - \theta } \left( {\sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)^{b - \theta } }}\left\{ \begin{aligned} - \phi \left[ {b - \theta - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right] \hfill \\ + \left[ {1 + \left( {b - \theta - n - 1} \right)\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right] \hfill \\ \end{aligned} \right\} = 0$$

And we can obtain the equilibrium revenue keeping rate as follows:

$$\phi_{d}^{o} = \frac{{1 + \left( {b - \theta - n - 1} \right)\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)}}{{b - \theta - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)}}$$

Plugging \(\phi_{d}^{o}\) into \(p_{i}^{od} \left( \phi \right)\), \(p_{d}^{o} \left( \phi \right)\) and \(q_{d}^{o} \left( \phi \right)\), then we can get the supplier i’s equilibrium retail price of product i, the equilibrium total retail price of product set and the equilibrium order quantity of product set as follows:

$$p_{i}^{od} = \frac{{\left[ {\left( {b - \theta - n} \right)\alpha_{i} + \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right]\left[ {b - \theta - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right]}}{{\left( {b - \theta } \right)\left( {b - \theta - n} \right)\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}p_{c}^{o}$$
$$p_{d}^{o} = \frac{{b - \theta - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)}}{b - \theta - n}p_{c}^{o}$$
$$q_{d}^{o} = \frac{{\left( {b - \theta - n} \right)^{b - \theta } }}{{\left[ {b - \theta - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right]^{b - \theta } }}q_{c}^{o}$$

Plugging the supplier i’s equilibrium retail price of product i, the equilibrium total retail price of product set, the equilibrium stock factor, and the equilibrium order quantity of product set into the profit functions of the suppliers, the O2O retailer and the consignment supply chain, we can obtain the equilibrium profits of the O2O retailer, the ith supplier and the consignment supply chain as follows:

$$\varPi_{R}^{od} = \frac{{\left( {b - \theta - n} \right)^{b - \theta - 1} }}{{\left[ {b - \theta - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right]^{b - \theta - 1} }}\varPi_{SC}^{oc}$$
$$\varPi_{{S_{i} }}^{od} = \frac{{\left( {b - \theta - n} \right)^{b - \theta - 1} \left( {b - \theta - 1} \right)\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{{\left[ {b - \theta - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right]^{b - \theta } }}\varPi_{SC}^{oc}$$
$$\varPi_{SC}^{od} = \frac{{\left( {b - \theta - n} \right)^{b - \theta } + \left( {b - \theta - n} \right)^{b - \theta - 1} \left( {b - \theta } \right)n\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{{\left[ {b - \theta - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right]^{b - \theta } }}\varPi_{SC}^{oc}$$
  1. (2)

    Suppliers’ Sequential Decision (SE)

The profit functions of the supplier i and the O2O retailer in the consignment supply chain under the revenue sharing contract can be formulated as follows:

$$\varPi_{{S_{i} }}^{o} \left( {\left. {p_{i} } \right|p_{1} , \ldots ,p_{i - 1} ,z} \right) = y_{o} \left( p \right)\left\{ {\left( {1 - \phi } \right)p_{i} E\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \alpha_{i} c_{o} z} \right\}$$
$$\varPi_{R}^{o} \left( \phi \right) = y_{o} \left( p \right)\left\{ {\phi pE\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)c_{o} z} \right\}$$

We will use induction proof method to derive the corresponding equilibrium solutions.

First, we consider the case of \(i = n\). Given stock factor \(z\), the supplier n’s optimal problem is as follows:

$$\mathop {\hbox{max} }\limits_{{p_{n} }} \;\varPi_{{S_{n} }}^{o} \left( {\left. {p_{n} } \right|p_{1} , \ldots ,p_{n - 1} ,z} \right) = y_{o} \left( p \right)\left\{ {\left( {1 - \phi } \right)p_{n} E\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \alpha_{n} c_{o} z} \right\}$$

Solving the first-order condition of the supplier n’s optimization problem with respect to (w.r.t.) and the retail price \(p_{n}\):

$$\frac{{\partial \varPi_{{S_{n} }}^{o} \left( {p_{n} |p_{1} , \ldots ,p_{n - 1} ,z} \right)}}{{\partial p_{n} }} = \frac{{y_{o} \left( p \right)}}{p}\left\{ \begin{aligned} & - \left( {b - \theta - 1} \right)p_{n} \left( {1 - \phi } \right)\left[ {z - {\rm M}\left( z \right)} \right] \hfill \\ & + \left( {b - \theta } \right)\alpha_{n} c_{o} z + p_{ - n} \left( {1 - \phi } \right)\left[ {z - {\rm M}\left( z \right)} \right] \hfill \\ \end{aligned} \right\} = 0$$

Then we can get the reaction function of \(p_{n}^{od'}\) w.r.t. \(\left\{ {p_{1} , \ldots ,p_{n - 1} } \right\}\) as follows:

$$p_{n}^{od'} \left( {p_{1} , \ldots ,p_{n - 1} } \right) = \frac{{\left( {b - \theta } \right)\alpha_{n} c_{o} z}}{{\left( {b - \theta - 1} \right)\left( {1 - \phi } \right)\left[ {z - {\rm M}\left( z \right)} \right]}} + \frac{{\sum\nolimits_{i = 1}^{n - 1} {p_{i} } }}{b - \theta - 1}$$

Substituting \(p_{n}^{od'} \left( {p_{1} , \ldots ,p_{n - 1} } \right)\) into \(\varPi_{{S_{n - 1} }} \left( {p_{n - 1} |p_{1} , \ldots ,p_{n - 2} ,z} \right)\), we can get the supplier n-1’s optimal problem is as follows:

$$\begin{aligned} \mathop {\hbox{max} }\limits_{{p_{n - 1} }} \;\varPi_{{S_{n - 1} }}^{o} \left( {p_{n - 1} |p_{1} , \ldots ,p_{n - 2} ,z} \right) \hfill \\ = y_{o} \left( {p_{1} , \ldots ,p_{n - 1} ,p_{n}^{od'} \left( {p_{1} , \ldots ,p_{n - 1} } \right)} \right)\left\{ {\left( {1 - \phi } \right)p_{n - 1} E\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \alpha_{n - 1} c_{o} z} \right\} \hfill \\ \end{aligned}$$

Solving the first-order condition of the supplier n-1’s optimization problem with respect to (w.r.t.) and the retail price \(p_{n - 1}\), we can get:

$$\frac{{\partial \varPi_{{S_{n - 1} }}^{o} \left( {p_{n - 1} |p_{1} , \ldots ,p_{n - 2} ,z} \right)}}{{\partial p_{n - 1} }} = \frac{{y_{o} \left( p \right)}}{p}\left\{ \begin{aligned} \frac{{\left( {b - \theta } \right)\alpha_{n} + \left( {b - \theta } \right)^{2} \alpha_{n - 1} }}{b - \theta - 1}c_{o} z \hfill \\ - \left( {b - \theta } \right)\left( {1 - \phi } \right)p_{n - 1} \left[ {z - {\rm M}\left( z \right)} \right] \hfill \\ + \frac{b - \theta }{b - \theta - 1}\left( {1 - \phi } \right)\sum\nolimits_{i = 1}^{n - 2} {p_{i} } \left[ {z - {\rm M}\left( z \right)} \right] \hfill \\ \end{aligned} \right\} = 0$$

Then we can get the reaction function of \(p_{n - 1}^{od'}\) w.r.t. \(\left\{ {p_{1} , \ldots ,p_{n - 2} } \right\}\) as follows:

$$p_{n - 1}^{od'} \left( {p_{1} , \ldots ,p_{n - 2} } \right) = \frac{{\left[ {\alpha_{n} + \left( {b - \theta } \right)\alpha_{n - 1} } \right]c_{o} z}}{{\left( {b - \theta - 1} \right)\left( {1 - \phi } \right)\left[ {z - {\rm M}\left( z \right)} \right]}} + \frac{{\sum\nolimits_{i = 1}^{n - 2} {p_{i} } }}{b - \theta - 1}$$

Repeating the same derivation process, finally, we can get:

$$p_{1}^{od'} = \frac{{\left[ {\left( {b - \theta - 1} \right)\alpha_{1} + \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right]c_{o} z}}{{\left( {b - \theta - 1} \right)\left( {1 - \phi } \right)\left[ {z - {\rm M}\left( z \right)} \right]}}$$

Substituting \(p_{1}^{od'}\) into the reaction function \(p_{2}^{od'} \left( {p_{1} } \right)\), we can get \(p_{2}^{od'}\); substituting \(p_{1}^{od'}\) and \(p_{2}^{od'}\) into the reaction function \(p_{3}^{od'} \left( {p_{1} ,p_{2} } \right)\),…., repeating these substituting process, we can get the reaction function of \(p_{i}^{od'}\) and \(p_{d'}^{o}\) w.r.t. \(z\) as follows:

$$p_{i}^{od'} \left( z \right) = \frac{{\left[ {\left( {b - \theta - 1} \right)^{i} \alpha_{i} + \left( {b - \theta } \right)^{i - 1} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right]c_{o} z}}{{\left( {b - \theta - 1} \right)^{i} \left( {1 - \phi } \right)\left[ {z - {\rm M}\left( z \right)} \right]}}$$
$$p_{d'}^{o} \left( z \right) = \left( {\frac{b - \theta }{b - \theta - 1}} \right)^{n} \frac{{\alpha c_{o} z}}{{\left( {1 - \phi } \right)\left[ {z - {\rm M}\left( z \right)} \right]}}$$

Substituting \(p_{i}^{od'} \left( z \right)\) and \(p_{d'}^{o} \left( z \right)\) into the supplier i’s expected profit function, we can obtain the supplier i’s optimal problem as follows:

$$\mathop {\hbox{max} }\limits_{z} \;\varPi_{{S_{i} }}^{o} \left( {p_{i}^{od'} \left( z \right),p_{d'}^{o} \left( z \right),z} \right) = y_{o} \left( {p_{d'}^{o} \left( z \right)} \right)\left\{ {\left( {1 - \phi } \right)p_{i}^{od'} \left( z \right) \cdot E\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \alpha_{i} c_{o} z} \right\}$$

Likewise, solving the first-order condition of the supplier i’s optimization problem w.r.t. the stock factor \(z\):

$$\begin{aligned} \frac{{d\varPi_{{S_{i} }}^{o} \left( {p_{i}^{od'} \left( z \right),p_{d'}^{o} \left( z \right),z} \right)}}{dz} \hfill \\ = a\frac{{\left( {b - \theta - 1} \right)^{{\left( {b - \theta } \right)n - i}} }}{{\left( {b - \theta } \right)^{{\left( {b - \theta } \right)n - i + 1}} }}\frac{{\left( {1 - \phi } \right)^{b - \theta } c_{si} }}{{\left( {c_{s} } \right)^{b - \theta } }}\frac{{\left[ {z - {\rm M}\left( z \right)} \right]^{b - \theta - 1} }}{{z^{b - \theta } }}\left\{ {z + \left( {b - \theta - 1} \right){\rm M}\left( z \right) - \left( {b - \theta } \right)zF\left( z \right)} \right\} \hfill \\ = 0 \hfill \\ \end{aligned}$$

Then we can get the equilibrium stock factor as follows:

$$F\left( {z_{d'}^{o} } \right) = \frac{1}{b - \theta } + \frac{{\left( {b - \theta - 1} \right){\rm M}\left( {z_{d'}^{o} } \right)}}{{\left( {b - \theta } \right)z_{d'}^{o} }} = F\left( {z_{c}^{o} } \right)$$

On this basis, we can get the supplier’s reaction function of equilibrium retail price of product i w.r.t. the revenue keeping rate, the reaction function of total equilibrium retail price of product set w.r.t. the revenue keeping rate, and the distribution function of the equilibrium stock factor as follows:

$$p_{i}^{od'} \left( \phi \right) = \frac{{\left( {b - \theta - 1} \right)^{i} \alpha_{i} + \left( {b - \theta } \right)^{i - 1} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{{\left( {b - \theta } \right)\left( {b - \theta - 1} \right)^{i - 1} \left( {1 - \phi } \right)}}p_{c}^{o}$$
$$p_{d'}^{o} \left( \phi \right) = \frac{{\left( {b - \theta } \right)^{n - 1} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{{\left( {b - \theta - 1} \right)^{n - 1} \left( {1 - \phi } \right)}}p_{c}^{o}$$
$$F\left( {z_{d'}^{o} } \right) = \frac{1}{b - \theta } + \frac{{\left( {b - \theta - 1} \right){\rm M}\left( {z_{d'}^{o} } \right)}}{{\left( {b - \theta } \right)z_{d'}^{o} }} = F\left( {z_{c}^{o} } \right)$$

Then, we have the reaction function of the decentralized equilibrium order quantity w.r.t. the revenue keeping rate as follows:

$$q_{d'}^{o} \left( \phi \right) = \frac{{\left( {b - \theta - 1} \right)^{{\left( {n - 1} \right)\left( {b - \theta } \right)}} \left( {1 - \phi } \right)^{b - \theta } }}{{\left( {b - \theta } \right)^{{\left( {n - 1} \right)\left( {b - \theta } \right)}} \left( {\sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)^{b - \theta } }}q_{c}^{o}$$

Substituting \(p_{d'}^{o} \left( \phi \right)\) and \(z_{d'}^{o}\) into the O2O retailer’s profit function, we can obtain the O2O retailer’s optimal problem as follows:

$$\mathop {\hbox{max} }\limits_{\phi } \;\varPi_{R}^{o} \left( \phi \right) = y_{o} \left( {p_{d'}^{o} \left( \phi \right)} \right)\left\{ {\phi p_{d'}^{o} \left( \phi \right)\left[ {z_{d'}^{o} - {\rm M}\left( {z_{d'}^{o} } \right)} \right] - \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)c_{o} z_{d'}^{o} } \right\}$$

Solving the first-order condition of the O2O retailer’s profit function w.r.t. the revenue keeping rate \(\phi\), we can obtain the equilibrium revenue keeping rate as follows:

$$\frac{{d\varPi_{R} \left( \phi \right)}}{d\phi } = \left( {1 - \phi } \right)^{b - \theta - 2} ac_{o} z_{d'}^{o} \left[ {\frac{{z_{d'}^{o} - {\rm M}\left( {z_{d'}^{o} } \right)}}{{c_{s} z_{d'}^{o} }}} \right]^{b - \theta } \frac{{\left( {b - \theta - 1} \right)^{{\left( {b - \theta - 1} \right)n}} }}{{\left( {b - \theta } \right)^{{\left( {b - \theta } \right)n - 1}} }}\left\{ \begin{aligned} - \phi \left[ {\left( {b - \theta } \right)^{n} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } + \left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right] \hfill \\ + \left[ {\left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right) + \left( {b - \theta } \right)^{n - 1} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right] \hfill \\ \end{aligned} \right\} = 0$$

Then we can obtain the equilibrium revenue keeping rate as follows:

$$\phi_{d'}^{o} = \frac{{\left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right) + \left( {b - \theta } \right)^{n - 1} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{{\left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right) + \left( {b - \theta } \right)^{n} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}$$

Plugging \(\phi_{d'}^{o}\) into \(p_{i}^{od'} \left( \phi \right)\), \(p_{d'}^{o} \left( \phi \right)\) and \(q_{d'}^{o} \left( \phi \right)\), then we can get the supplier i’s equilibrium retail price of product i, the equilibrium total retail price of product set and the equilibrium order quantity of product set as follows:

$$p_{i}^{od'} = \frac{{\left[ {\left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right) + \left( {b - \theta } \right)^{n} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right]\left[ {\left( {b - \theta - 1} \right)^{i} \alpha_{i} + \left( {b - \theta } \right)^{i - 1} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right]}}{{\left( {b - \theta - 1} \right)^{i} \left( {b - \theta } \right)^{n} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}p_{c}^{o}$$
$$p_{d'}^{o} = \frac{{\left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right) + \left( {b - \theta } \right)^{n} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{{\left( {b - \theta - 1} \right)^{n} }}p_{c}^{o}$$
$$q_{d'}^{o} = \frac{{\left( {b - \theta - 1} \right)^{{\left( {b - \theta } \right)n}} }}{{\left( {b - \theta - 1} \right)^{{\left( {b - \theta } \right)n}} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)^{b - \theta } + \left( {b - \theta } \right)^{{\left( {b - \theta } \right)n}} \left( {\sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)^{b - \theta } }}q_{c}^{o}$$

Plugging the supplier i’s equilibrium retail price of the ith product, the equilibrium total retail price of product set, the equilibrium stock factor of product set, and the equilibrium order quantity of product set into the profit functions of the suppliers, the O2O retailer and the consignment supply chain, we can obtain the equilibrium profits of the O2O retailer, the ith supplier and the consignment supply chain as follows:

$$\varPi_{R}^{od'} = \frac{{\left( {b - \theta - 1} \right)^{{\left( {b - \theta - 1} \right)n}} }}{{\left[ {\left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right) + \left( {b - \theta } \right)^{n} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right]^{b - \theta - 1} }}\varPi_{SC}^{oc}$$
$$\varPi_{{S_{i} }}^{od'} = \frac{{\left( {b - \theta - 1} \right)^{{\left( {b - \theta } \right)n}} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}{{\left[ {\left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right) + \left( {b - \theta } \right)^{n} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right]^{b - \theta } }}\left( {\frac{b - \theta }{b - \theta - 1}} \right)^{i - 1} \varPi_{SC}^{oc}$$
$$\varPi_{SC}^{od'} = \frac{{\left( {b - \theta - 1} \right)^{{\left( {b - \theta - 1} \right)n}} \left\{ {\left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right) + \left[ {\left( {b - \theta } \right)^{n + 1} - \left( {b - \theta - 1} \right)^{n + 1} } \right]\sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right\}}}{{\left[ {\left( {b - \theta - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right) + \left( {b - \theta } \right)^{n} \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right]^{b - \theta } }}\varPi_{SC}^{oc}$$

1.3 Cooperative decision model

The O2O retailer’s and the ith supplier’s profit reaction functions w.r.t. the revenue keeping rate \(\phi\) are as follows:

$$\varPi_{R}^{oc} \left( \phi \right) = \left[ {\left( {b - \theta } \right)\phi - \left( {b - \theta - 1} \right)\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right]\varPi_{SC}^{oc}$$
$$\varPi_{{S_{i} }}^{oc} \left( \phi \right) = \left[ {\left( {b - \theta } \right)\left( {1 - \phi } \right)\frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }} - \left( {b - \theta - 1} \right)\alpha_{i} } \right]\varPi_{SC}^{oc}$$

According to the Nash bargaining theory (Nash, 1950; Kalai and Smorodinsky 1975; Binmore et al. 1986; Muthoo 1999), the asymmetric Nash bargaining problem for bargaining over the revenue keeping rate \(\phi\) can be expressed as follows:

$$\begin{aligned} & \mathop {\hbox{max} }\limits_{\phi } \;\;\varOmega \left( \phi \right) = \prod\nolimits_{i = 1}^{n} {\left[ {\varPi_{{S_{i} }}^{oc} \left( \phi \right) - T_{{S_{i} }}^{od} } \right]^{{\tau_{i} }} } \cdot \left[ {\varPi_{R}^{oc} \left( \phi \right) - T_{R}^{od} } \right]^{{1 - \sum\nolimits_{i = 1}^{n} {\tau_{i} } }} \\ & s.t.\;\;\;\left\{ \begin{aligned} & \sum\nolimits_{i = 1}^{n} {\varPi_{{S_{i} }}^{oc} \left( \phi \right)} + \varPi_{R}^{oc} \left( \phi \right) = \varPi_{SC}^{oc} \hfill \\ & \varPi_{{S_{i} }}^{oc} \left( \phi \right) \ge T_{{S_{i} }}^{od} \hfill \\ & \varPi_{R}^{oc} \left( \phi \right) \ge T_{R}^{od} \hfill \\ & 0 \le \phi \le 1 \hfill \\ \end{aligned} \right. \\ \end{aligned}$$

Hereinto, \(\tau_{i} \in \left( {0,1} \right)\) is the bargaining power of the ith supplier.\(T_{{S_{i} }}^{od} = \hbox{max} \left\{ {\varPi_{{S_{i} }}^{od} ,\varPi_{{S_{i} }}^{od'} } \right\}\) and \(T_{R}^{od} = \hbox{max} \left\{ {\varPi_{R}^{od} ,\varPi_{R}^{od'} } \right\}\) are the disagreement points or threat points.

Solving the first-order condition and the second-order derivative of the optimal problem w.r.t. the revenue keeping rate \(\phi\) respectively,

$$\frac{d\varOmega \left( \phi \right)}{d\phi } = \left( {b - \theta } \right)\varPi_{SC}^{oc} \varOmega \left( \phi \right) \cdot \left\{ {\frac{{1 - \sum\nolimits_{i = 1}^{n} {\tau_{i} } }}{{\varPi_{R}^{oc} \left( \phi \right) - T_{R}^{od} }} - \sum\nolimits_{i = 1}^{n} {\left[ {\frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}\frac{{\tau_{i} }}{{\varPi_{{S_{i} }}^{oc} \left( \phi \right) - T_{{S_{i} }}^{od} }}} \right]} } \right\} = 0$$
$$\frac{{d^{2} \varOmega \left( \phi \right)}}{{d\phi^{2} }} = \left[ {\left( {b - \theta } \right)\varPi_{SC}^{oc} } \right]^{2} \varOmega \left( \phi \right) \cdot \left\{ \begin{aligned} \left\{ {\frac{{1 - \sum\nolimits_{i = 1}^{n} {\tau_{i} } }}{{\varPi_{R}^{oc} \left( \phi \right) - T_{R}^{od} }} - \sum\nolimits_{i = 1}^{n} {\left[ {\frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}\frac{{\tau_{i} }}{{\varPi_{{S_{i} }}^{oc} \left( \phi \right) - T_{{S_{i} }}^{od} }}} \right]} } \right\}^{2} \hfill \\ - \left\{ {\frac{{1 - \sum\nolimits_{i = 1}^{n} {\tau_{i} } }}{{\left[ {\varPi_{R}^{oc} \left( \phi \right) - T_{R}^{od} } \right]^{2} }} + \sum\nolimits_{i = 1}^{n} {\left[ {\left( {\frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}} \right)^{2} \frac{{\tau_{i} }}{{\left[ {\varPi_{{S_{i} }}^{oc} \left( \phi \right) - T_{{S_{i} }}^{od} } \right]^{2} }}} \right]} } \right\} \hfill \\ \end{aligned} \right\}$$

When the following condition holds:

$$\left\{ {\frac{{1 - \sum\nolimits_{i = 1}^{n} {\tau_{i} } }}{{\varPi_{R}^{oc} \left( \phi \right) - T_{R}^{od} }} - \sum\nolimits_{i = 1}^{n} {\left[ {\frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}\frac{{\tau_{i} }}{{\varPi_{{S_{i} }}^{oc} \left( \phi \right) - T_{{S_{i} }}^{od} }}} \right]} } \right\}^{2} < \frac{{1 - \sum\nolimits_{i = 1}^{n} {\tau_{i} } }}{{\left[ {\varPi_{R}^{oc} \left( \phi \right) - T_{R}^{od} } \right]^{2} }} + \sum\nolimits_{i = 1}^{n} {\left[ {\left( {\frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}} \right)^{2} \frac{{\tau_{i} }}{{\left[ {\varPi_{{S_{i} }}^{oc} \left( \phi \right) - T_{{S_{i} }}^{od} } \right]^{2} }}} \right]}$$

We can obtain the bargaining revenue keeping rate \(\phi_{c}^{o}\) by solving the follow equation as follows:

$$\sum\nolimits_{i = 1}^{n} {\left[ {\frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }}\frac{{\tau_{i} }}{{\varPi_{{S_{i} }}^{oc} \left( {\phi_{c}^{o} } \right) - T_{{S_{i} }}^{od} }}} \right]} = \frac{{1 - \sum\nolimits_{i = 1}^{n} {\tau_{i} } }}{{\varPi_{R}^{oc} \left( {\phi_{c}^{o} } \right) - T_{R}^{od} }}$$

Hence, we can get the bargaining profits of the O2O retailer and the ith supplier under O2O mode as follows:

$$\varPi_{R}^{oc} = \left[ {\left( {b - \theta } \right)\phi_{c}^{o} - \left( {b - \theta - 1} \right)\left( {1 - \sum\nolimits_{i = 1}^{n} {\alpha_{i} } } \right)} \right]\varPi_{SC}^{oc}$$
$$\varPi_{{S_{i} }}^{oc} = \left[ {\left( {b - \theta } \right)\left( {1 - \phi_{c}^{o} } \right)\frac{{\alpha_{i} }}{{\sum\nolimits_{i = 1}^{n} {\alpha_{i} } }} - \left( {b - \theta - 1} \right)\alpha_{i} } \right]\varPi_{SC}^{oc}$$

Appendix B: Proofs for Sect. 4.2

Under the pure online/offline mode, the online channel demand share of the market \(\lambda = 1\) or \(\lambda = 0\), and the mutual promotional coefficient between channels \(\theta = 0\). When \(\lambda = 1\), i.e., under the pure online channel mode, the retailer’s channel cost is \(c_{r} = c_{on}\); when \(\lambda = 0\), i.e., under the pure offline channel mode, \(c_{r} = c_{off}\). The total cost of multiple complementary suppliers’ products is \(c_{s} = \sum\nolimits_{i = 1}^{n} {c_{si} }\). Thus, the total channel cost under the pure online/offline mode is \(c_{p} = c_{r} + c_{s}\). For the convenience of modeling, we define the supplier i’s cost ratio \(\beta_{i} = \frac{{c_{si} }}{{c_{p} }}\), then, the retailer’s channel cost ratio is \(\frac{{c_{r} }}{{c_{p} }} = 1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} }\), and the ratio of the ith product’s cost to the total channel cost is \(\frac{{\beta_{i} }}{{\sum\nolimits_{i = 1}^{n} {\beta_{i} } }}\). Due to the mutual promotional coefficient between channels \(\theta = 0\), then \(y_{p} \left( p \right) = ap^{ - b}\).

2.1 Centralized decision model

When the consignment supply chain under the pure online/offline mode takes a centralized strategy, the optimal profit function of the supply chain can be formulated as follows:

$$\mathop {\hbox{max} }\limits_{p,z} \;\varPi_{SC}^{p} \left( {p,z} \right) = y_{p} \left( p \right)\left\{ {pE\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - c_{p} z} \right\}$$

Solving the first-order condition of the optimization profit function with respect to the retail price \(p\) and the stock factor \(z\), we can get the optimal total retail price and the distribution function of the centralized optimal stock factor as follows:

$$p_{c}^{p} = \frac{b}{b - 1}\frac{{c_{p} z_{c}^{p} }}{{z_{c}^{p} - {\rm M}\left( {z_{c}^{p} } \right)}}$$
$$F\left( {z_{c}^{p} } \right) = \frac{1}{b} + \frac{{\left( {b - 1} \right){\rm M}\left( {z_{c}^{p} } \right)}}{{bz_{c}^{p} }}$$

Where \({\rm M}\left( {z_{c}^{p} } \right) = \int_{A}^{{z_{c}^{p} }} {\left( {z_{c}^{p} - x} \right)f\left( x \right)dx}\)

Likewise, we can get the optimal retail price of the ith product as follows:

$$p_{i}^{pc} = \frac{{\beta_{i} }}{{\sum\nolimits_{i = 1}^{n} {\beta_{i} } }}p_{c}^{p}$$

Then, we can have the centralized optimal order quantity as follows:

$$q_{c}^{p} = y_{p} \left( {p_{c}^{p} } \right)z_{c}^{p}$$

Substituting the optimal retail price \(p_{c}^{p}\) and the optimal stock factor \(z_{c}^{p}\) into the profit function of the centralized consignment supply chain under the pure online/offline mode, we can obtain the optimal profit of the consignment supply chain as follows:

$$\varPi_{SC}^{pc} = \frac{{c_{p} q_{c}^{p} }}{b - 1}$$

2.2 Decentralized decision model

  1. 1.

    Suppliers’ Simultaneous Decision (SI)

The profit functions of the supplier i and the retailer in the consignment supply chain under the revenue sharing contract can be formulated as follows:

$$\varPi_{{S_{i} }}^{p} \left( {p_{i} ,z} \right) = y_{p} \left( p \right)\left\{ {\left( {1 - \phi } \right)p_{i} E\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \beta_{i} c_{p} z} \right\}$$
$$\varPi_{R}^{p} \left( \phi \right) = y_{p} \left( p \right)\left\{ {\phi pE\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)c_{p} z} \right\}$$

Solving the first-order condition of the supplier’s optimization problem with respect to (w.r.t.) and the retail price \(p_{i}\) and the stock factor \(z\), we can get the supplier’s reaction function of equilibrium retail price with respect to the revenue keeping rate, the reaction function of equilibrium total retail price with respect to the revenue keeping rate, and the distribution function of the equilibrium stock factor as follows:

$$p_{i}^{pd} \left( \phi \right) = \frac{{\left( {b - 1} \right)\left[ {\left( {b - n} \right)\beta_{i} + \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right]}}{{b\left( {b - n} \right)\left( {1 - \phi } \right)}}p_{c}^{p}$$
$$p_{d}^{p} \left( \phi \right) = \frac{{\left( {b - 1} \right)\sum\nolimits_{i = 1}^{n} {\beta_{i} } }}{{\left( {b - n} \right)\left( {1 - \phi } \right)}}p_{c}^{p}$$
$$F\left( {z_{d}^{p} } \right) = F\left( {z_{c}^{p} } \right)$$

Then, we have the reaction function of the decentralized equilibrium order quantity w.r.t. the revenue keeping rate as follows:

$$q_{d}^{p} \left( \phi \right) = \frac{{\left( {b - n} \right)^{b} \left( {1 - \phi } \right)^{b} }}{{\left( {b - 1} \right)^{b} \left( {\sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)^{b} }}q_{c}^{p}$$

Substituting \(p_{d}^{p} \left( \phi \right)\) and \(z_{c}^{p}\) into the retailer’s profit function, we can obtain the retailer’s optimal problem for as follows:

$$\mathop {\hbox{max} }\limits_{\phi } \;\varPi_{R}^{p} \left( \phi \right) = y_{p} \left( {p_{d}^{p} \left( \phi \right)} \right)\left\{ {\phi p_{d}^{p} \left( \phi \right)\left[ {z_{d}^{p} - \varLambda \left( {z_{d}^{p} } \right)} \right] - \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)c_{p} z_{d}^{p} } \right\}$$

Solving the first-order condition of the retailer’s profit function w.r.t. the revenue keeping rate \(\phi\), we can obtain the equilibrium revenue keeping rate as follows:

$$\phi_{d}^{p} = \frac{{1 + \left( {b - n - 1} \right)\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)}}{{b - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)}}$$

Plugging \(\phi_{d}^{p}\) into \(p_{i}^{pd} \left( \phi \right)\), \(p_{d}^{p} \left( \phi \right)\) and \(q_{d}^{p} \left( \phi \right)\), then we can get the supplier i’s equilibrium retail price, the equilibrium total retail price and the equilibrium order quantity as follows:

$$p_{i}^{pd} = \frac{{\left[ {\left( {b - n} \right)\beta_{i} + \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right]\left[ {b - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)} \right]}}{{b\left( {b - n} \right)\sum\nolimits_{i = 1}^{n} {\beta_{i} } }}p_{c}^{p}$$
$$p_{d}^{p} = \frac{{b - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)}}{b - n}p_{c}^{p}$$
$$q_{d}^{p} = \frac{{\left( {b - n} \right)^{b} }}{{\left[ {b - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)} \right]^{b} }}q_{c}^{p}$$

Plugging the supplier i’s equilibrium retail price, the equilibrium total retail price, the equilibrium stock factor, and the equilibrium order quantity into the profit functions of the suppliers, the retailer and the consignment supply chain, we can obtain the equilibrium profits of the retailer, the ith supplier and the consignment supply chain as follows:

$$\varPi_{R}^{pd} = \frac{{\left( {b - n} \right)^{b - 1} }}{{\left[ {b - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)} \right]^{b - 1} }}\varPi_{SC}^{pc}$$
$$\varPi_{{S_{i} }}^{pd} = \frac{{\left( {b - n} \right)^{b - 1} \left( {b - 1} \right)\sum\nolimits_{i = 1}^{n} {\beta_{i} } }}{{\left[ {b - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)} \right]^{b} }}\varPi_{SC}^{pc}$$
$$\varPi_{SC}^{pd} = \frac{{\left( {b - n} \right)^{b} + \left( {b - n} \right)^{b - 1} bn\sum\nolimits_{i = 1}^{n} {\beta_{i} } }}{{\left[ {b - n\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)} \right]^{b} }}\varPi_{SC}^{pc}$$
  1. (2)

    Suppliers’ Sequential Decision (SE)

The profit functions of the supplier i and the retailer in the consignment supply chain under the revenue sharing contract can be formulated as follows:

$$\varPi_{{S_{i} }}^{p} \left( {\left. {p_{i} } \right|p_{1} , \ldots ,p_{i - 1} ,z} \right) = y_{p} \left( p \right)\left\{ {\left( {1 - \phi } \right)p_{i} E\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \beta_{i} c_{p} z} \right\}$$
$$\varPi_{R}^{p} \left( \phi \right) = y_{p} \left( p \right)\left\{ {\phi pE\left[ {\hbox{min} \left\{ {z,x} \right\}} \right] - \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)c_{p} z} \right\}$$

Solving the first-order condition of the supplier i’s optimization problem with respect to (w.r.t.) and the retail price \(p_{i}\) and the stock factor \(z\) sequentially, we can get the supplier i’s reaction function of equilibrium retail price of the ith product with respect to the revenue keeping rate, the reaction function of equilibrium total retail price of product set with respect to the revenue keeping rate, and the distribution function of the equilibrium stock factor of product set as follows:

$$p_{i}^{pd'} \left( \phi \right) = \frac{{\left( {b - 1} \right)^{i} \beta_{i} + b^{i - 1} \sum\nolimits_{i = 1}^{n} {\beta_{i} } }}{{b\left( {b - 1} \right)^{i - 1} \left( {1 - \phi } \right)}}p_{c}^{p}$$
$$p_{d'}^{p} \left( \phi \right) = \frac{{b^{n - 1} \sum\nolimits_{i = 1}^{n} {\beta_{i} } }}{{\left( {b - 1} \right)^{n - 1} \left( {1 - \phi } \right)}}p_{c}^{p}$$
$$F\left( {z_{d'}^{p} } \right) = F\left( {z_{c}^{p} } \right)$$

Then, we have the reaction function of the decentralized equilibrium order quantity w.r.t. the revenue keeping rate as follows:

$$q_{d'}^{p} \left( \phi \right) = \frac{{\left( {b - 1} \right)^{{\left( {n - 1} \right)b}} \left( {1 - \phi } \right)^{b} }}{{b^{{\left( {n - 1} \right)b}} \left( {\sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)^{b} }}q_{c}^{p}$$

Substituting \(p_{d'}^{p} \left( \phi \right)\) and \(z_{d'}^{p}\) into the retailer’s profit function, we can obtain the retailer’s expected profit function for as follows:

$$\varPi_{R}^{p} \left( \phi \right) = y_{p} \left( {p_{d'}^{p} \left( \phi \right)} \right)\left\{ {\phi p_{d'}^{p} \left( \phi \right)\left[ {z_{d'}^{p} - {\rm M}\left( {z_{d'}^{p} } \right)} \right] - \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)c_{p} z_{d'}^{p} } \right\}$$

Solving the first-order condition of the retailer’s profit function w.r.t. the revenue keeping rate \(\phi\), we can obtain the equilibrium revenue keeping rate as follows:

$$\phi_{d'}^{p} = \frac{{\left( {b - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right) + b^{n - 1} \sum\nolimits_{i = 1}^{n} {\beta_{i} } }}{{\left( {b - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right) + b^{n} \sum\nolimits_{i = 1}^{n} {\beta_{i} } }}$$

Plugging \(\phi_{d'}^{p}\) into \(p_{i}^{pd'} \left( \phi \right)\), \(p_{d'}^{p} \left( \phi \right)\) and \(q_{d'}^{p} \left( \phi \right)\), then we can get the supplier i’s equilibrium retail price of product i, the equilibrium total retail price of product set and the equilibrium order quantity of product set as follows:

$$p_{i}^{pd'} = \frac{{\left[ {\left( {b - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right) + b^{n} \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right]\left[ {\left( {b - 1} \right)^{i} \beta_{i} + b^{i - 1} \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right]}}{{\left( {b - 1} \right)^{i} b^{n} \sum\nolimits_{i = 1}^{n} {\beta_{i} } }}p_{c}^{p}$$
$$p_{d'}^{p} = \frac{{\left( {b - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right) + b^{n} \sum\nolimits_{i = 1}^{n} {\beta_{i} } }}{{\left( {b - 1} \right)^{n} }}p_{c}^{p}$$
$$q_{d'}^{p} = \frac{{\left( {b - 1} \right)^{bn} }}{{\left( {b - 1} \right)^{bn} \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)^{b} + b^{bn} \left( {\sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)^{b} }}q_{c}^{p}$$

Plugging the supplier i’s equilibrium retail price of the ith product, the equilibrium total retail price of product set, the equilibrium stock factor of product set, and the equilibrium order quantity of product set into the profit functions of the suppliers, the retailer and the consignment supply chain, we can obtain the equilibrium profits of the retailer, the ith supplier and the consignment supply chain as follows:

$$\varPi_{R}^{pd'} = \frac{{\left( {b - 1} \right)^{{\left( {b - 1} \right)n}} }}{{\left[ {\left( {b - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right) + b^{n} \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right]^{b - 1} }}\varPi_{SC}^{pc}$$
$$\varPi_{{S_{i} }}^{pd'} = \frac{{\left( {b - 1} \right)^{bn} \sum\nolimits_{i = 1}^{n} {\beta_{i} } }}{{\left[ {\left( {b - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right) + b^{n} \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right]^{b} }}\left( {\frac{b}{b - 1}} \right)^{i - 1} \varPi_{SC}^{pc}$$
$$\varPi_{SC}^{pd'} = \frac{{\left( {b - 1} \right)^{bn + 1} \left\{ {\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right) + \left[ {\frac{{b^{n + 1} }}{{\left( {b - 1} \right)^{n + 1} }} - 1} \right]\sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right\}}}{{\left[ {\left( {b - 1} \right)^{n} \left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right) + b^{n} \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right]^{b} }}\varPi_{SC}^{pc}$$

2.3 Cooperative decision model

The retailer’s and the ith supplier’s profit reaction functions w.r.t. the revenue keeping rate \(\phi\) are as follows:

$$\varPi_{R}^{pc} \left( \phi \right) = \left[ {b\phi - \left( {b - 1} \right)\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)} \right]\varPi_{SC}^{pc}$$
$$\varPi_{{S_{i} }}^{pc} \left( \phi \right) = \left[ {b\left( {1 - \phi } \right)\frac{{\beta_{i} }}{{\sum\nolimits_{i = 1}^{n} {\beta_{i} } }} - \left( {b - 1} \right)\beta_{i} } \right]\varPi_{SC}^{pc}$$

According to the Nash bargaining theory (Nash 1950; Kalai and Smorodinsky 1975; Binmore et al. 1986; Muthoo 1999), the asymmetric Nash bargaining problem for bargaining over the revenue keeping rate \(\phi\) can be expressed as follows:

$$\begin{aligned} \mathop {\hbox{max} }\limits_{\phi } \;\;\varOmega \left( \phi \right) = \prod\nolimits_{i = 1}^{n} {\left[ {\varPi_{{S_{i} }}^{pc} \left( \phi \right) - T_{{S_{i} }}^{pd} } \right]^{{\tau_{i} }} } \cdot \left[ {\varPi_{R}^{pc} \left( \phi \right) - T_{R}^{pd} } \right]^{{1 - \sum\nolimits_{i = 1}^{n} {\tau_{i} } }} \hfill \\ s.t.\;\;\;\left\{ \begin{aligned} & \sum\nolimits_{i = 1}^{n} {\varPi_{{S_{i} }}^{pc} \left( \phi \right)} + \varPi_{R}^{pc} \left( \phi \right) = \varPi_{SC}^{pc} \hfill \\ & \varPi_{{S_{i} }}^{pc} \left( \phi \right) \ge T_{{S_{i} }}^{pd} \hfill \\ & \varPi_{R}^{pc} \left( \phi \right) \ge T_{R}^{pd} \hfill \\ & 0 \le \phi \le 1 \hfill \\ \end{aligned} \right. \hfill \\ \end{aligned}$$

Hereinto, \(\tau_{i} \in \left( {0,1} \right)\) is the bargaining power of the ith supplier.\(T_{{S_{i} }}^{pd} = \hbox{max} \left\{ {\varPi_{{S_{i} }}^{pd} ,\varPi_{{S_{i} }}^{pd'} } \right\}\) and \(T_{R}^{pd} = \hbox{max} \left\{ {\varPi_{R}^{pd} ,\varPi_{R}^{pd'} } \right\}\) are the disagreement points or threat points.

Solving the first-order condition and the second-order derivative of the optimal problem w.r.t. the revenue keeping rate \(\phi\) respectively, we can obtain the bargaining revenue keeping rate \(\phi_{c}^{p}\) by solving the follow equation as follows:

$$\sum\nolimits_{i = 1}^{n} {\left[ {\frac{{\beta_{i} }}{{\sum\nolimits_{i = 1}^{n} {\beta_{i} } }}\frac{{\tau_{i} }}{{\varPi_{{S_{i} }}^{pc} \left( {\phi_{c}^{p} } \right) - T_{{S_{i} }}^{pd} }}} \right]} = \frac{{1 - \sum\nolimits_{i = 1}^{n} {\tau_{i} } }}{{\varPi_{R}^{pc} \left( {\phi_{c}^{p} } \right) - T_{R}^{pd} }}$$

Hence, we can get the bargaining profits of the retailer and the ith supplier under the pure online/offline mode as follows:

$$\varPi_{R}^{pc} = \left[ {b\phi_{c}^{p} - \left( {b - 1} \right)\left( {1 - \sum\nolimits_{i = 1}^{n} {\beta_{i} } } \right)} \right]\varPi_{SC}^{pc}$$
$$\varPi_{{S_{i} }}^{pc} = \left[ {b\left( {1 - \phi_{c}^{p} } \right)\frac{{\beta_{i} }}{{\sum\nolimits_{i = 1}^{n} {\beta_{i} } }} - \left( {b - 1} \right)\beta_{i} } \right]\varPi_{SC}^{pc}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Su, SI.I. Consignment supply chain cooperation for complementary products under online to offline business mode. Flex Serv Manuf J 33, 136–182 (2021). https://doi.org/10.1007/s10696-020-09376-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-020-09376-6

Keywords

Navigation