Skip to main content
Log in

Gaussian Pyramid of Conditional Generative Adversarial Network for Real-World Noisy Image Denoising

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Image denoising is an essential and important pre-processing step in digital imaging systems. However, most of existing methods are not adaptive in real-world applications due to the complexity of real noise. To address this problem, a novel pyramidal generative structural network (PGSN) is proposed for robust and efficient real-world noisy image denoising. Specifically, we consider the denoising problem as a process of image generation. The procedure is to first build a Gaussian pyramid where a cascade of encoder-decoder networks are used to adaptively capture multi-scale image features and progressively reconstruct the corresponding noise-free image from coarse to fine granularity. Then, we train a conditional form of GAN at each pyramid level. By integrating the conditional GAN approach into the Gaussian pyramid, the proposed network can well combine the image features from different pyramid levels, and an incremental distinction between the real noise and image details is dynamically built up, hence greatly boosting the denoising performance. Extensive experimental results demonstrate that our PGSN gives satisfactory denoising results, and achieves superior performance against the state-of-the-arts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546

    Article  MathSciNet  Google Scholar 

  2. Starck JL, Candès EJ, Donoho DL (2002) The curvelet transform for image denoising. IEEE Trans Image Process 11(6):670–684

    Article  MathSciNet  Google Scholar 

  3. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  4. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space. In: ICIP, pp 313–316

  5. Zhou M, Chen H, Paisley J, Ren L, Li L, Xing Z, Dunson D, Sapiro G, Carin L (2012) Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images. Trans Image Process 21(1):130–144

    Article  MathSciNet  Google Scholar 

  6. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  Google Scholar 

  7. Marc L, Buades A, Morel JM (2013) A nonlocal bayesian image denoising algorithm. SIAM J Imaging Sci 6(3):1665–1688

    Article  MathSciNet  Google Scholar 

  8. Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image denoising. In: CVPR, pp 2862–2869

  9. Xu J, Zhang L, Zuo W, Zhang D, Feng X (2015) Patch group based nonlocal self-similarity prior learning for image denoising. In: ICCV, pp 244–252

  10. Chen F, Zhang L, Yu H (2015) External patch prior guided internal clustering for image denoising. In: ICCV, pp 603–611

  11. Luo E, Chan SH, Nguyen TQ (2015) Adaptive image denoising by targeted databases. IEEE Trans Image Process 24(7):2167–2181

    Article  MathSciNet  Google Scholar 

  12. Mosseri I, Zontak M, Irani M (2013) Combining the power of internal and external denoising. In: ICCP, pp 1–9

  13. Burger HC, Schuler CJ, Harmeling S (2012) Image denoising: Can plain neural networks compete with BM3D? In: CVPR, pp 2392–2399

  14. Chen Y, Pock T (2017) Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans Pattern Anal Mach Intell 39(6):1256–1272

    Article  Google Scholar 

  15. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  MathSciNet  Google Scholar 

  16. Healey GE, Kondepudy R (1994) Radiometric CCD camera calibration and noise estimation. IEEE Trans Pattern Anal Mach Intell 16(3):267–276

    Article  Google Scholar 

  17. Tsin Y, Ramesh V, Kanade T (2001) Statistical calibration of CCD imaging process. In: ICCV, pp 480–487

  18. Liu C, Szeliski R, Bing Kang S, Zitnick CL, Freeman WT (2008) Automatic estimation and removal of noise from a single image. IEEE Trans Pattern Anal Mach Intell 30(2):299–314

    Article  Google Scholar 

  19. Colom M, Lebrun M, Morel J (2015) Multiscale image blind denoising. IEEE Trans Image Process 24(10):3149–3161

    Article  MathSciNet  Google Scholar 

  20. Nam S, Hwang Y, Matsushita Y, Kim SJ (2016) A holistic approach to cross-channel image noise modeling and its application to image denoising. In: CVPR, pp 1683–1691

  21. Neatlab ABSoft. Neat image. https://ni.neatvideo.com/home

  22. Zhu F, Chen G, Hao J, Heng P (2017) Blind image denoising via dependent Dirichlet process tree. IEEE Trans Pattern Anal Mach Intell 39(8):1518–1531

    Article  Google Scholar 

  23. Xu J, Zhang L, Zhang D (2018) External prior guided internal prior learning for real-world noisy image denoising. IEEE Trans Image Process 27(6):2996–3010

    Article  MathSciNet  Google Scholar 

  24. Xu J, Zhang L, Zhang D (2018) A trilateral weighted sparse coding scheme for real-world image denoising. In: ECCV, pp 21–38

  25. Yu J, Tao D, Wang M, Rui Y (2015) Learning to rank using user clicks and visual features for image retrieval. IEEE Trans Cybern 45(4):767–779

    Article  Google Scholar 

  26. Yu J, Tan M, Zhang H, Tao D, Rui Y (2019) Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2019.2932058

  27. Yu J, Li J, Yu Z, Huang Q (2019) Multimodal transformer with multi-view visual representation for image captioning. IEEE Trans Circuits Syst Video Technol. https://doi.org/10.1109/TCSVT.2019.2947482

  28. Zhang K, Zuo W, Gu S, Zhang Lei (2018) Learning deep CNN denoiser prior for image restoration. In: CVPR, pp 21–38

  29. Lefkimmiatis S (2017) Non-local color image denoising with convolutional neural networks. In: CVPR, pp 5882–5891

  30. Lefkimmiatis S (2018) Universal denoising networks: a novel CNN architecture for image denoising. In: CVPR, pp 3204–3213

  31. Chen J, Chen J, Chao H, Yang M (2018) Image blind denoising with generative adversarial network based noise modeling. In: CVPR, pp 3155–3164

  32. Chakrabarti A, Xiong Y, Sun B, Darrell T, Scharstein D, Zickler T, Saenko K (2014) Modeling radiometric uncertainty for vision with tone-mapped color images. IEEE Trans Pattern Anal Mach Intell 36(11):2185–2198

    Article  Google Scholar 

  33. Goodfellow IJ, Pouget-Abadie J, Mirza M, Warde-Farley B, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NIPS, pp 2672–2680

  34. Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784

  35. Guo X, Nie R, Cao J, Zhou D, Mei L, He K (2019) Fusegan: learning to fuse multi-focus image via conditional generative adversarial network. IEEE Trans Multimed 21(8):1982–1996

    Article  Google Scholar 

  36. Dar SU, Yurt M, Karacan L, Erdem A, Erdem E, Çukur T (2019) Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans Med Imaging 38(10):2375–2388

    Article  Google Scholar 

  37. Liu J, Sun W, Li M (2019) Recurrent conditional generative adversarial network for image deblurring. IEEE Access 7:6186–6193

    Article  Google Scholar 

  38. Dosovitskiy A, Brox T (2016) Inverting visual representations with convolutional networks. In: CVPR, pp 4829–4837

  39. Donahue J, Darrell T, Pathak D, Krähenbühl P, Efros AA (2016) Context encoders: feature learning by inpainting. In: CVPR, pp 2536–2544

  40. Vincent D, Francesco V. A guide to convolution arithmetic for deep learning. arXiv:1603.07285

  41. Yoshua B, Jérôme L, Ronan C, Jason W (2009) Curriculum learning. In: ICML, p 6

  42. Olga R, Jia D, Hao S, Jonathan K, Sanjeev S, Sean M, Zhiheng H, Andrej K, Aditya K, Michael B (2014) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    MathSciNet  Google Scholar 

  43. Plötz T, Roth S (2017) Benchmarking denoising algorithms with real photographs. CVPR 115(3):2750–2759

    Google Scholar 

  44. Sabir MF, Sheikh HR, Bovik AC (2006) A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans Image Process 15(11):3440–3451

    Article  Google Scholar 

  45. Kundu D, Evans BL (2016) Full-reference visual quality assessment for synthetic images: a subjective study. In: ICIP, pp 2374–2378

  46. Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Ledig C, Theis L, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp 105–114

  47. Alahi A, Johnson J, Fei-Fei L (2016) Perceptual losses for real-time style transfer and super-resolution. In: ECCV, pp 694–711

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61673402, 61273270 and 60802069), the Natural Science Foundation of Guangdong Province (2017A030311029, 2016B010123005 and 2017B090909005), the Science and Technology Program of Guangzhou of China (201704020180 and 201604020024), and the Fundamental Research Funds for the Central Universities of China (17lgzd08), and the University of Macau (MYRG2019-00006-FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Zhang, B. & Hu, H. Gaussian Pyramid of Conditional Generative Adversarial Network for Real-World Noisy Image Denoising. Neural Process Lett 51, 2669–2684 (2020). https://doi.org/10.1007/s11063-020-10215-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10215-w

Keywords

Navigation