Skip to main content
Log in

Low-velocity impact performance of UHMWPE composites consolidated with carbide particles

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) is one of important materials utilized against impacting threats. In this work, bulk UHMWPE specimens were fabricated in a compression molding chamber, and molding parameters such as pressure and temperature were varied in the specimen preparation stage to investigate the effect of molding parameters on the impact performance. In addition, silicon carbide fillers were included in the UHMWPE matrix to enhance the anti-impact properties of the specimens. From the results, high molding pressure provides enhanced impact resistance due to improved microstructural consolidation. On the other hand, molding temperature just above the melting point of polymer is much beneficial to the anti-impact behavior of the structures. Carbide fillers lead to an increase in the frictional interaction between the impactor and composites and thereby enhancing the impact resistance of the structures. However, the gain in the protective properties performance is restricted up to a certain amount of carbide loading because at higher filler ratios, the composites change from ductile to brittle characteristics. For this reason, crack growth susceptibility develops in the composites at excessive carbide loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Huang A, Su R, Liu Y. Effects of a coupling agent on the mechanical and thermal properties of ultrahigh molecular weight polyethylene/nano silicon carbide composites. J Appl Polym Sci. 2013;129(3):1218–22. https://doi.org/10.1002/app.38743.

    Article  Google Scholar 

  2. Gürgen S. Wear performance of UHMWPE based composites including nano-sized fumed silica. Compos B Eng. 2019;173:106967. https://doi.org/10.1016/j.compositesb.2019.106967.

    Article  Google Scholar 

  3. Black J, Hastings G, editors. Handbook of biomaterial properties. 1st ed. London: Chapman & Hall; 1998.

    Google Scholar 

  4. Gürgen S, Kuşhan MC. High performance fabrics in body protective systems. Mater Sci Forum. 2016;880:132–5. https://doi.org/10.4028/www.scientific.net/MSF.880.132.

    Article  Google Scholar 

  5. Zhang D, Sun Y, Chen L, Pan N. A comparative study on low-velocity impact response of fabric composite laminates. Mater Des. 2013;50:750–6. https://doi.org/10.1016/j.matdes.2013.03.044.

    Article  Google Scholar 

  6. Lässig T, et al. Investigations on the spall and delamination behavior of UHMWPE composites. Compos Struct. 2017;182:590–7. https://doi.org/10.1016/j.compstruct.2017.09.031.

    Article  Google Scholar 

  7. Arora S, Majumdar A, Butola BS. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Compos Struct. 2019;210:41–8. https://doi.org/10.1016/j.compstruct.2018.11.028.

    Article  Google Scholar 

  8. Zulkifli F, Stolk J, Heisserer U, Yong AT-M, Li Z, Hu XM. Strategic positioning of carbon fiber layers in an UHMwPE ballistic hybrid composite panel. Int J Impact Eng. 2019;129:119–27. https://doi.org/10.1016/j.ijimpeng.2019.02.005.

    Article  Google Scholar 

  9. Chouhan H, Asija N, Ahmed A, Kartikeya C, Bhatnagar N. Effect of moisture on high strain rate performance of UHMWPE fiber based composite. Procedia Struct Integr. 2019;14:830–8. https://doi.org/10.1016/j.prostr.2019.07.061.

    Article  Google Scholar 

  10. Yang Y, Chen X. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design. Compos Struct. 2017;174:233–43. https://doi.org/10.1016/j.compstruct.2017.04.033.

    Article  Google Scholar 

  11. Panin SV, et al. Wear resistance of composites based on hybrid UHMWPE–PTFE matrix: mechanical and tribotechnical properties of the matrix. J Frict Wear. 2015;36(3):249–56. https://doi.org/10.3103/S1068366615030113.

    Article  MathSciNet  Google Scholar 

  12. Gürgen S, Çelik ON, Kuşhan MC. Tribological behavior of UHMWPE matrix composites reinforced with PTFE particles and aramid fibers. Compos B Eng. 2019;173:106949. https://doi.org/10.1016/j.compositesb.2019.106949.

    Article  Google Scholar 

  13. Gürgen S, Kuşhan MC, Li W. Shear thickening fluids in protective applications: a review. Prog Polym Sci. 2017;75:48–72. https://doi.org/10.1016/j.progpolymsci.2017.07.003.

    Article  Google Scholar 

  14. Gürgen S, Majumdar A. Tuning the frictional properties of carbon fabrics using boron carbide particles. Fibers Polym. 2019;20(4):725–31. https://doi.org/10.1007/s12221-019-8493-z.

    Article  Google Scholar 

  15. Krishnan K, Sockalingam S, Bansal S, Rajan SD. Numerical simulation of ceramic composite armor subjected to ballistic impact. Compos B Eng. 2010;41(8):583–93. https://doi.org/10.1016/j.compositesb.2010.10.001.

    Article  Google Scholar 

  16. Shen Z, Hu D, Yang G, Han X. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet. Compos Struct. 2019;213:209–19. https://doi.org/10.1016/j.compstruct.2019.01.078.

    Article  Google Scholar 

  17. Gürgen S. An investigation on composite laminates including shear thickening fluid under stab condition. J Compos Mater. 2019;53(8):1111–22. https://doi.org/10.1177/0021998318796158.

    Article  Google Scholar 

  18. Gürgen S, Kuşhan MC. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos Part Appl Sci Manuf. 2017;94:50–60. https://doi.org/10.1016/j.compositesa.2016.12.019.

    Article  Google Scholar 

  19. Gürgen S, Kuşhan MC. The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech Adv Mater Struct. 2017;24(16):1381–90. https://doi.org/10.1080/15376494.2016.1231355.

    Article  Google Scholar 

  20. Ge S, et al. Friction and wear behavior of nitrogen ion implanted UHMWPE against ZrO2 ceramic. Wear. 2003;255(7–12):1069–75. https://doi.org/10.1016/S0043-1648(03)00269-2.

    Article  Google Scholar 

  21. Gao P, Mackley MR. The structure and rheology of molten ultra-high-molecular-mass polyethylene. Polymer. 1994;35(24):5210–6. https://doi.org/10.1016/0032-3861(94)90471-5.

    Article  Google Scholar 

  22. Wu JJ, Buckley CP, O’Connor JJ. Mechanical integrity of compression-moulded ultra-high molecular weight polyethylene: effects of varying process conditions. Biomaterials. 2002;23(17):3773–83. https://doi.org/10.1016/S0142-9612(02)00117-5.

    Article  Google Scholar 

  23. Parasnis NC, Ramani K. Analysis of the effect of pressure on compression moulding of UHMWPE. J Mater Sci - Mater Med. 1998;9(3):165–72. https://doi.org/10.1023/A:1008871720389.

    Article  Google Scholar 

  24. Mohagheghian I, McShane GJ, Stronge WJ. Impact perforation of monolithic polyethylene plates: projectile nose shape dependence. Int J Impact Eng. 2015;80:162–76. https://doi.org/10.1016/j.ijimpeng.2015.02.002.

    Article  Google Scholar 

  25. Mourad A-HI, Fouad H, Elleithy R. Impact of some environmental conditions on the tensile, creep-recovery, relaxation, melting and crystallinity behaviour of UHMWPE-GUR 410-medical grade. Mater Des. 2009;30(10):4112–9. https://doi.org/10.1016/j.matdes.2009.05.001.

    Article  Google Scholar 

  26. Oral E, Ghali BW, Rowell SL, Micheli BR, Lozynsky AJ, Muratoglu OK. A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength. Biomaterials. 2010;31(27):7051–60. https://doi.org/10.1016/j.biomaterials.2010.05.041.

    Article  Google Scholar 

  27. KanagaKaruppiah KS, et al. Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomater. 2008;4(5):1401–10. https://doi.org/10.1016/j.actbio.2008.02.022.

    Article  Google Scholar 

  28. Alderson KL, Evans KE. The fabrication of microporous polyethylene having a negative Poisson’s ratio. Polymer. 1992;33(20):4435–8. https://doi.org/10.1016/0032-3861(92)90294-7.

    Article  Google Scholar 

  29. Gürgen S, Kuşhan MC. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym Test. 2017;64:296–306. https://doi.org/10.1016/j.polymertesting.2017.11.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Gürgen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal participants

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürgen, S. Low-velocity impact performance of UHMWPE composites consolidated with carbide particles. Archiv.Civ.Mech.Eng 20, 38 (2020). https://doi.org/10.1007/s43452-020-00042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00042-0

Keywords

Navigation