Skip to main content
Log in

Triple-frequency multi-GNSS reflectometry snow depth retrieval by using clustering and normalization algorithm to compensate terrain variation

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Snow is an important water resource and plays a critical role in the hydrologic cycle. Accurate measurements of snow depth are needed by scientists to set up a more refined meteorology–hydrology model. Recently, the Global Navigation Satellite System Reflectometry (GNSS-R) has been developed and applied for snow depth monitoring, with low cost and high resolution. We propose an improved snow depth retrieval method using a combination of GNSS triple-frequency carrier phase. The topographic feature of the reflecting surface is considered for estimating the snow depth by using the density-based spatial clustering of applications with noise algorithm and normalization method. Observables from the GNSS station in Alaska, USA, are used to monitor snow depth and compared with the ground-truth measurements. Compared with the traditional triple-frequency snow depth retrieval method, the new approach has better performance for Galileo and BDS. The RMSE of the snow depth estimate reduces by nearly 40%, and the correlation coefficient increases from 0.93 to 0.97 for Galileo and from 0.91 to 0.95 for BDS, respectively. The research findings show no notable deviations on snow depth average estimation between Galileo and BDS observations compared to the GPS ones. Moreover, the solution with the proposed method results in improving spatial resolution due to the increasing number of satellites and better azimuth coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Credit: Larson and Small 2014; Yu et al. 2015)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alonso-Arroyo A, Camps A, Aguasca A, Forte GF, Monerris A, Rudiger C, Walker JP, Park H, Pascual D, Onrubia R (2014) Dual-polarization GNSS-R interference pattern technique for soil moisture mapping. IEEE J Sel Top Appl Earth Obs Remote Sens 7(5):1533–1544

    Article  Google Scholar 

  • Bilich A, Larson KM (2007) Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Sci 42(6):1–16

    Article  Google Scholar 

  • Chew CC, Small EE, Larson KM, Zavorotny VU (2014) Effects of near-surface soil moisture on GPS SNR data: development of a retrieval algorithm for soil moisture. IEEE Trans Geosci Remote Sens 52(1):537–543

    Article  Google Scholar 

  • China Satellite Navigation Office (2017) BeiDou navigation satellite system signal in space interface control document: Open service signal B1C (version 1.0). Retrieved October 20, 2019, from http://www.beidou.gov.cn/xt/gfxz/201712/P020171226741342013031.pdf

  • Elósegui P, Davis JL, Jaldehag RTK, Johansson JM, Niell AE, Shapiro II (1995) Geodesy using the global positioning system: the effects of signal scattering on estimates of site position. J Geophys Res Solid Earth 100(B6):9921–9934

    Article  Google Scholar 

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: International conference on knowledge discovery and data mining, Portland, Oregon, USA, 2–4 Aug 1996, vol 96(34), pp 226–231

  • European Union (2016) European GNSS (Galileo) open service signal in space interface control document. OS SIS ICD, Issue 1.3, December 2016

  • GPS Directorate (2013) Global positioning system modernized civil navigation (CNAV) live-sky broadcast test plan. Global Positioning Systems Directorate, 30 May 2013

  • Gutmann ED, Larson KM, Williams MW, Nievinski FG, Zavorotny V (2012) Snow measurement by GPS interferometric reflectometry: an evaluation at Niwot Ridge, Colorado. Hydrol Process 26(19):2951–2961

    Article  Google Scholar 

  • Hauschild A (2017) Combinations of observations. In: Teunissen PJG, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, New York, pp 583–604

    Chapter  Google Scholar 

  • Jin S, Qian X, Kutoglu H (2016) Snow depth variations estimated from GPS-reflectometry: a case study in Alaska from L2P SNR data. Remote Sens 8(1):63

    Article  Google Scholar 

  • Larson KM (2016) GPS interferometric reflectometry: applications to surface soil moisture, snow depth, and vegetation water content in the western United States. Wiley Interdiscip Rev Water 3(6):775–787

    Article  Google Scholar 

  • Larson KM, Nievinski FG (2013) GPS snow sensing: results from the earthscope plate boundary observatory. GPS Solut 17(1):41–52

    Article  Google Scholar 

  • Larson KM, Small EE (2014) Normalized microwave reflection index: A vegetation measurement derived from GPS networks. IEEE J Sel Top Appl Earth Obs Remote Sens 7(5):1501–1511

    Article  Google Scholar 

  • Larson KM, Small EE (2016) Estimation of snow depth using L1 GPS signal-to-noise ratio data. IEEE J Sel Top Appl Earth Obs Remote Sens 9(10):4802–4808

    Article  Google Scholar 

  • Larson KM, Small EE, Gutmann ED, Bilich AL, Braun JJ, Zavorotny VU (2008a) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35(24):851–854

    Article  Google Scholar 

  • Larson KM, Small EE, Gutmann E, Bilich A, Axelrad P, Braun J (2008b) Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solut 12(3):173–177

    Article  Google Scholar 

  • Larson KM, Gutmann ED, Zavorotny VU, Braun JJ, Williams MW, Nievinski FG (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36(17):1–5

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Langley RB (2010) Three’s the challenge: a close look at GPS SVN62 triple-frequency signal combinations finds carrier-phase variations on the new L5. GPS World 21(8):8–19

    Google Scholar 

  • Nievinski FG, Larson KM (2014a) Forward modeling of GPS multipath for near-surface reflectometry and positioning applications. GPS Solut 18(2):309–322

    Article  Google Scholar 

  • Nievinski FG, Larson KM (2014b) An open source GPS multipath simulator in Matlab/Octave. GPS Solut 18(3):473–481

    Article  Google Scholar 

  • Nievinski FG, Larson KM (2014c) Inverse modeling of GPS multipath for snow depth estimation—part II: application and validation. IEEE Trans Geosci Remote Sens 52(10):6564–6573

    Article  Google Scholar 

  • Ozeki M, Heki K (2012) GPS snow depth meter with geometry-free linear combinations of carrier phases. J Geod 86(3):209–219

    Article  Google Scholar 

  • Pan L, Zhang X, Li X, Li X, Lu C, Liu J, Wang Q (2017) Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo. Adv Space Res 63(9):2696–2710

    Article  Google Scholar 

  • Press WH, Rybicki GB (1989) Fast algorithm for spectral analysis of unevenly sampled data. Astrophys J 338:277–280

    Article  Google Scholar 

  • Qian X, Jin S (2016) Estimation of snow depth from GLONASS SNR and phase-based multipath reflectometry. IEEE J Sel Top Appl Earth Obs Remote Sens 9(10):4817–4823

    Article  Google Scholar 

  • Rodriguez-Alvarez N, Bosch-Lluis X, Camps A, Aguasca A, Vall-Llossera M, Valencia E et al (2011) Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the interference pattern GNSS-R technique. Radio Sci 46:1–11

    Article  Google Scholar 

  • Simsky A (2006) Three’s the charm: triple-frequency combinations in future GNSS. Inside GNSS 1(5):38–41

    Google Scholar 

  • Tabibi S, Nievinski FG, van Dam T, Monico JF (2015) Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications. Adv Space Res 55(4):1104–1116

    Article  Google Scholar 

  • Tabibi S, Geremia-Nievinski F, van Dam T (2017) Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval. IEEE Trans Geosci Remote Sens 55(7):3773–3785

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • UNAVCO Community (2002) SuomiNet-G GPS Network—SG27-Barrow SuomiNet P.S. UNAVCO, Inc, GPS/GNSS Observations Dataset

  • Wang X, Zhang Q, Zhang S (2018) Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram. GPS Solut 22(1):22

    Article  Google Scholar 

  • Yu K, Ban W, Zhang X, Yu X (2015) Snow depth estimation based on multipath phase combination of GPS triple-frequency signals. IEEE Trans Geosci Remote Sens 53(9):5100–5109

    Article  Google Scholar 

  • Yu K, Li Y, Chang X (2018) Snow depth estimation based on combination of pseudorange and carrier phase of GNSS dual-frequency signals. IEEE Trans Geosci Remote Sens 57(3):1817–1828

    Article  Google Scholar 

  • Zhang S, Wang X, Zhang Q (2017) Avoiding errors attributable to topography in GPS-IR snow depth retrievals. Adv Space Res 59(6):1663–1669

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the GNSS data provided by the Plate Boundary Observatory operated by UNAVCO (UNAVCO Community 2002) and the DEM data provided by USGS. We would also like to express our gratitude to National Operational Hydrologic Remote Sensing Center and NOAA for providing climate data. We are very grateful for the help of language editing from Mohamed Freeshah. Two anonymous reviewers are also appreciated for their valuable comments and careful checks. This research was funded by the National Natural Science Foundation of China (Grant No. 41774034), the National Science Fund for Distinguished Young Scholars (Grant No. 41825009) and the Fund for Creative Research Groups of China (Grant No. 41721003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Guo, F. & Zhang, X. Triple-frequency multi-GNSS reflectometry snow depth retrieval by using clustering and normalization algorithm to compensate terrain variation. GPS Solut 24, 52 (2020). https://doi.org/10.1007/s10291-020-0966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-020-0966-4

Keywords

Navigation