Skip to main content
Log in

PRF-RW: a progressive random forest-based random walk approach for interactive semi-automated pulmonary lobes segmentation

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The computational detection of lung lobes from computed tomography images is a challenging segmentation problem with important respiratory healthcare applications, including emphysema, chronic bronchitis, and asthma. This paper proposes a progressive random forest-based random walk approach for interactive semi-automated pulmonary lobes segmentation. First, our model performs automated segmentation of the lung lobes in a progressive random forest network, eliminating the need for prior segmentation of lungs, vessels, or airways. Then, an interactive lobes segmentation approach based on random walk mechanism is designed for improving auto-segmentation accuracy. Furthermore, we annotate a new dataset which contains 93 scans (57 men, 36 women; age range: 40–90 years) from the Central Hospital Affiliated with Shenyang Medical College (CHASMC). We evaluate the model on our annotated dataset, LIDC (https://wiki.cancerimagingarchive.net) and LOLA11 (http://lolall.com/) datasets. The proposed model achieved a Dice score of \(0.906 \pm 0.106\) for LIDC, \(0.898 \pm 0.113\) for LOLA11, and \(0.921 \pm 0.101\) for our dataset. Experimental results show the accuracy of the proposed approach, which consistently improves performance across different datasets by a maximum of 8.2% as compared to baselines model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. https://www.mathworks.com/products/matlab.html.

References

  1. Stamatis G (2015) Staging of lung cancer: the role of noninvasive, minimally invasive and invasive techniques. Eur Respir J 46(2):521–531

    Google Scholar 

  2. Santosh K, Vajda S, Antani S, Thoma GR (2016) Edge map analysis in chest X-rays for automatic pulmonary abnormality screening. Int J Comput Assist Radiol Surg 11(9):1637–1646

    Google Scholar 

  3. Karargyris A, Siegelman J, Tzortzis D, Jaeger S, Candemir S, Xue Z, Santosh K, Vajda S, Antani S, Folio L et al (2016) Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int J Comput Assist Radiol Surg 11(1):99–106

    Google Scholar 

  4. Santosh K, Antani S (2017) Automated chest X-ray screening: can lung region symmetry help detect pulmonary abnormalities? IEEE Trans Med Imaging 37(5):1168–1177

    Google Scholar 

  5. Vajda S, Karargyris A, Jaeger S, Santosh K, Candemir S, Xue Z, Antani S, Thoma G (2018) Feature selection for automatic tuberculosis screening in frontal chest radiographs. J Med Syst 42(8):146

    Google Scholar 

  6. Santosh K, Wendling L (2018) Angular relational signature-based chest radiograph image view classification. Med Biol Eng Comput 56(8):1447–1458

    Google Scholar 

  7. Zohora FT, Antani S, Santosh K (2018) Circle-like foreign element detection in chest X-rays using normalized cross-correlation and unsupervised clustering. In: Medical imaging 2018: image processing, vol 10574. International Society for Optics and Photonics, p 105741V

  8. Li Q, Chen L, Li X, Xia S, Kang Y (2019) An improved random forests approach for interactive lobar segmentation on emphysema detection. Granul Comput. https://doi.org/10.1007/s41066-019-00171-9

    Article  Google Scholar 

  9. N. E. T. T. R. Group (2001) Patients at high risk of death after lung-volume-reduction surgery. N Engl J Med 345(1):1075–1083

    Google Scholar 

  10. Lassen B, Rikxoort V, Eva M, Schmidt M, Kerkstra S, Ginneken BV, Kuhnigk J-M (2013) Automatic segmentation of the pulmonary lobes from chest ct scans based on fissures, vessels, and bronchi. IEEE Trans Med Imaging 32(2):210–222

    Google Scholar 

  11. Wei Q, Hu Y, Gelfand G, MacGregor JH (2009) Segmentation of lung lobes in high-resolution isotropic CT images. IEEE Trans Biomed Eng 56(5):1383–1393

    Google Scholar 

  12. Gerard SE, Patton TJ, Christensen GE, Bayouth JE, Reinhardt JM (2018) Fissurenet: a deep learning approach for pulmonary fissure detection in CT images. IEEE Trans Med Imaging 38(1):156–166

    Google Scholar 

  13. Okusanya OT, DeJesus EM, Jiang JX, Judy RP, Venegas OG, Deshpande CG, Heitjan DF, Nie S, Low PS, Singhal S (2015) Intraoperative molecular imaging can identify lung adenocarcinomas during pulmonary resection. J Thorac Cardiovasc Surg 150(1):28–35

    Google Scholar 

  14. Xiao C, Stoel BC, Bakker ME, Peng Y, Stolk J, Staring M (2016) Pulmonary fissure detection in CT images using a derivative of stick filter. IEEE Trans Med Imaging 35(6):1488–1500

    Google Scholar 

  15. Pu J, Zheng B, Leader JK, Fuhrman C, Knollmann F, Klym A, Gur D (2009) Pulmonary lobe segmentation in CT examinations using implicit surface fitting. IEEE Trans Med Imaging 28(12):1986–1996

    Google Scholar 

  16. Hermanova Z, Ctvrtlik F, Herman M (2012) Surface anatomy of the pulmonary fissures determined by high-resolution computed tomography. Clin Anat 25(7):835–843

    Google Scholar 

  17. Sg AI, Wf S (2004) Automated lung segmentation for thoracic CT: impact on computer-aided diagnosis1. Acad Radiol 11(9):1011–1021

    Google Scholar 

  18. Pu J, Justus R, Chin AY (2008) Adaptive border marching algorithm: automatic lung segmentation on chest CT images. Acad Radiol 32(6):452–462

    Google Scholar 

  19. Rikxoort EM, Ginneken B (2011) Automatic segmentation of the lungs and lobes from thoracic CT scans. Int Workshop Pulm Image Anal 13(10):261–268

    Google Scholar 

  20. Lim H, Weinheimer O, Dinkel J (2016) Fully automated pulmonary lobar segmentation: influence of different prototype software programs onto quantitative evaluation of chronic obstructive lung disease. PLoS ONE 11(3):e0151498

    Google Scholar 

  21. Bağcı U, Bray M, Caban J, Yao J, Mollura DJ (2012) Computer-assisted detection of infectious lung diseases: a review. Comput Med Imaging Graph 36(1):72–84

    Google Scholar 

  22. Cuingnet R, Prevost R, Lesage D, Mory B, Ardon R (2014) Automatic detection and segmentation of kidneys in 3D CT images using random forests. Int Conf Med Image Comput Comput Assist Interv 132(11):66–74

    Google Scholar 

  23. Bragman FJ, Mcclelland JR, Jacob J, Hurst JR, Hawkes DJ (2017) Pulmonary lobe segmentation with probabilistic segmentation of the fissures and a groupwise fissure prior. IEEE Trans Med Imaging 36(8):1650–1663

    Google Scholar 

  24. Imran A, Hatamizadeh A, Ananth SP, Ding X, Tajbakhsh N, Terzopoulos D (2019) Fast and automatic segmentation of pulmonary lobes from chest CT using a progressive dense V-network. Comput Met Biomech Biomed Eng: Imaging Visual. https://doi.org/10.1080/21681163.2019.1672210

    Article  Google Scholar 

  25. Park J, Yun J, Kim N, Park B, Cho Y, Park HJ, Song M, Lee M, Seo JB (2019) Fully automated lung lobe segmentation in volumetric chest CT with 3D U-net: validation with intra-and extra-datasets. J Digit Imaging 33:221–230

    Google Scholar 

  26. Tang H, Zhang C, Xie X (2019) Automatic pulmonary lobe segmentation using deep learning. In: 16th IEEE international symposium on biomedical imaging, pp 1225–1228

  27. Wang W, Chen J, Zhao J, Chi Y, Xie X, Zhang L, Hua X (2019) Automated segmentation of pulmonary lobes using coordination-guided deep neural networks. In: 16th IEEE international symposium on biomedical imaging, 1353–1357

  28. Rikxoort EM, Prokop M, Hoop B, Viergever MA, Pluim JPW, Ginneken B (2010) Automatic segmentation of pulmonary lobes robust against incomplete fissures. IEEE Trans Med Imaging 29(6):1286–1296

    Google Scholar 

  29. Ross JC, Kindlmann G, Diaz A, Westin C (2010) Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation. Med Image Comput Comput Assist Interv 13(3):163–171

    Google Scholar 

  30. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337

    Google Scholar 

  31. Lee S, Kouzani A, Hu EJ (2010) Random forest based lung nodule classification aided by clustering. IEEE Trans Med Imaging 34(7):535–542

    Google Scholar 

  32. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    MATH  Google Scholar 

  33. Li X, Zhao H, Zhu W (2015) A cost sensitive decision tree algorithm with two adaptive mechanisms. Knowl Based Syst 88:24–33

    Google Scholar 

  34. Maurovic I, Seder M, Lenac K, Petrovic I (2018) Path planning for active slam based on the \(d^{\star }\) algorithm with negative edge weights. IEEE Trans Syst Man Cybern Syst 48(8):1321–1331

    Google Scholar 

  35. Cheung G, Su W, Mao Y, Lin C (2018) Robust semi-supervised graph classifier learning with negative edge weights. IEEE Trans Signal Inf Process Over Netw 4(4):712–726

    Google Scholar 

  36. Chen Y, Zou W, Tang Y, Xu C, Komodakis N (2018) Scom: spatiotemporal constrained optimization for salient object detection. IEEE Trans Image Process 27(7):3345–3357

    MathSciNet  MATH  Google Scholar 

  37. Du Q, Tian X (2018) Stability of nonlocal dirichlet integrals and implications for peridynamic correspondence material modeling. SIAM J Appl Math 78(3):1536–1552

    MathSciNet  MATH  Google Scholar 

  38. Rachh M, Askham T (2018) Integral equation formulation of the biharmonic dirichlet problem. J Sci Comput 75(2):762–781

    MathSciNet  MATH  Google Scholar 

  39. Li A, Li C, Wang X, Eberl S, Fulham M (2016) A combinatorial bayesian and dirichlet model for prostate MR image segmentation using probabilistic image features. Phys Med Biol 61(16):6085

    Google Scholar 

  40. Godsil C, Royle GF (2013) Algebraic graph theory, vol 207. Springer, Berlin

    MATH  Google Scholar 

  41. Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, Grossma BB, Nand Avants Murray C (2015) Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Mach Learn 13(2):209–225

    Google Scholar 

  42. Gao Y, Shao Y, Lian J, Wang AZ, Chen RC, Shem D (2016) Accurate segmentation of CT male pelvic organs via regression-based deformable models and multi-task random forests. IEEE Trans Med Imaging 35(6):1532–1543

    Google Scholar 

  43. Liu X, Fu T, Pan Z, Liu D, Hu W, Liu J, Zhang K (2017) Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans. Int J Comput Assist Radiol Surg 12(2):223–233

    Google Scholar 

  44. Li Y, Ho CP, Toulemonde M, Chahal N, Senior R, Tand M (2018) Fully automatic myocardial segmentation of contrast echocardiography sequence using random forests guided by shape model. IEEE Trans Med Imaging 37(5):1081–1091

    Google Scholar 

  45. Damopoulos D, Lerch TD, Schmaranzer F, Tannast M, Chenes C, Zheng G, Schmid J (2019) Segmentation of the proximal femur in radial MR scans using a random forest classifier and deformable model registration. Int J Comput Assist Radiol Surg 14(3):545–561

    Google Scholar 

  46. George K, Harrison AP, Jin D, Xu Z, Mollura DJ (2017) Pathological pulmonary lobe segmentation from CT images using progressive holistically nested neural networks and random walker. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support 10553(3):195–203

    Google Scholar 

  47. Ito K, Barnes PJ (2009) Copd as a disease of accelerated lung aging. Chest 135(1):173–180

    Google Scholar 

  48. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Int Conf Comput Vis Pattern Recognit 1(pp):886–893

    Google Scholar 

  49. Fan J, Wu Y, Wang F, Zhang P, Li M (2016) New point matching algorithm using sparse representation of image patch feature for SAR image registration. IEEE Trans Geosci Remote Sens 55(3):1498–1510

    Google Scholar 

  50. Gadde R, Jampani V, Marlet R, Gehler PV (2018) Efficient 2D and 3D facade segmentation using auto-context. IEEE Trans Pattern Anal Mach Intell 40(5):1273–1280

    Google Scholar 

  51. Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783

    Google Scholar 

  52. Dong X, Shen J, Shao L, Gool LV (2016) Sub-Markov random walk for image segmentation. IEEE Trans Image Process 25(2):516–527

    MathSciNet  MATH  Google Scholar 

  53. Liu Y, Zeng X, He Z, Zou Q (2017) Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources. IEEE/ACM Trans Comput Biol Bioinf 14(4):905–915

    Google Scholar 

  54. Kloas J, Woess W (2019) Multidimensional random walk with reflections. Atemwegs und lungenkrankheiten 129(1):336–354

    MathSciNet  MATH  Google Scholar 

  55. Belgiu M, Drăguţ L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31

    Google Scholar 

  56. Bragman FJ, McClelland JR, Jacob J, Hurst DJ, John R Hawkes (2017) Pulmonary lobe segmentation with probabilistic segmentation of the fissures and a groupwise fissure prior. IEEE Trans Med Imaging 36(8:1650–1663

    Google Scholar 

  57. Criminisi A, Shotton J, Konukoglu E et al (2012) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning, Foundations and Trends®. Comput Graph Vis 7(2–3):81–227

    MATH  Google Scholar 

  58. Kuhnigk J, Hahn H, Hindennach M, Dicken V, Krass S, Peitgen H (2003) Lung lobe segmentation by anatomy-guided 3d watershed transform. In: Medical imaging 2003: image processing, vol 5032. International Society for Optics and Photonics, pp 1482–1490

  59. Scheuch G (2003) Deposition of monodisperse aerosols in patients with hereditary \(\alpha 1\)-antitrypsin deficiency and lung emphysema. Atemwegs und lungenkrankheiten 29(7):317–323

    Google Scholar 

  60. St L, Wold S et al (1989) Analysis of variance (anova). Chemometr Intell Lab Syst 6(4):259–272

    Google Scholar 

  61. Bourgeois K, Robert S, Limet S, Essayan V (2017) An hierarchical labeling technique for interactive computation of watersheds. In: 2017 International conference on high performance computing and simulation (HPCS). IEEE, pp 86–92

  62. Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S et al (2018) Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging 37(7):1562–1573

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for the research reported in this paper through the research development fund at the Project of National Key R&D Program of China (2018YFC1311900) and the Project of National Key Technology R&D Program of the Ministry of Science and Technology (2017YFC0114200). The authors sincerely thank Prof. Shuyue Xia at the Central Hospital Affiliated to Shenyang Medical College for providing image data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Chen, L., Li, X. et al. PRF-RW: a progressive random forest-based random walk approach for interactive semi-automated pulmonary lobes segmentation. Int. J. Mach. Learn. & Cyber. 11, 2221–2235 (2020). https://doi.org/10.1007/s13042-020-01111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01111-9

Keywords

Navigation