Skip to main content
Log in

Topology and shape optimization of dissipative and hybrid mufflers

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This article presents a topology optimization (TO) method developed for maximizing the acoustic attenuation of a perforated dissipative muffler in the targeted frequency range by optimally distributing the absorbent material within the chamber. The finite element method (FEM) is applied to the wave equation formulated in terms of acoustic pressure (chamber) and velocity potential (central duct, due to the existence of thermal gradients and mean flow) in order to evaluate the acoustic performance of the noise control device in terms of transmission loss (TL). Sound propagation through the chamber fibrous material is modeled considering complex equivalent acoustic properties, which vary spatially not only as a function of temperature but also as a function of the filling density, since non-homogeneous density distributions are considered. The acoustic coupling at the perforated duct is performed by introducing a coordinate-dependent equivalent impedance. The objective function to maximize is expressed as the mean TL in the targeted frequency range. The sensitivities of this function with respect to the filling density of each element in the chamber are evaluated following the standard adjoint method. The method of moving asymptotes (MMA) is used to update the design variables at each iteration of the TO process, keeping the weight of absorbent material equal or lower than a given value, while maximizing attenuation. Additionally, several particular designs inferred from the topology optimization results are analyzed. For example, the sizing optimization of a number of rings is carried out simultaneously with the aforementioned TO process (density layout). A reactive chamber is added in order to evaluate the TL of a hybrid muffler and its shape optimization is also carried out simultaneously with the aforementioned TO. Results show an increase in the muffler’s mean TL at target frequencies, for all cases under study, while the amount of absorbent material used is maintained or even reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Allard JF, Atalla N (2009) Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials. Wiley, Chichester

    Book  Google Scholar 

  • Antebas AG, Denia FD, Pedrosa AM, Fuenmayor FJ (2013) A finite element approach for the acoustic modelling of perforated dissipative mufflers with non-homogeneous properties. Math Comput Model 57:1970–1978

    Article  Google Scholar 

  • Atkinson KE (1989) An Introduction to Numerical Analysis. John Wiley & Sons, 2nd Edition

  • Azevedo FM, Moura MS, Vicente WM, Picelli R, Pavanello R (2017) Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method. Struct Multidiscip Optim 58:2239–2252

    Article  Google Scholar 

  • Barbieri R, Barbieri N (2006) Finite element acoustic simulation based shape optimization of a muffler. Appl Acoust 67:346–357

    Article  Google Scholar 

  • Chang YC, Chiu MC (2008) Shape optimization of one-chamber perforated plug/non-plug mufflers by simulated annealing method. Int J Numer Methods Eng 74:1592–1620

    Article  Google Scholar 

  • Chiu M (2011) Optimization design of hybrid mufflers on broadband frequencies using the genetic algorithm. Arch Acoust 36:795–822

    Article  Google Scholar 

  • Christie DRA (1976) Measurement of the acoustic properties of a sound-absorbing material at high temperatures. J Sound Vib 46:347–355

    Article  Google Scholar 

  • De Lima KF, Lenzi A, Barbieri R (2011) The study of reactive silencers by shape and parametric optimization techniques. Appl Acoust 72:142–150

    Article  Google Scholar 

  • Delany ME, Bazley EN (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3:105–116

    Article  Google Scholar 

  • Denia FD, Sánchez-Orgaz EM, Baeza L, Kirby R (2016) Point collocation scheme in mufflers with temperature gradient and mean flow. J Comput Appl Math 291:127–141

    Article  MathSciNet  Google Scholar 

  • Denia FD, Sánchez-Orgaz EM, Martínez-Casas J, Kirby R (2015) Finite element based acoustic analysis of dissipative mufflers with high temperature and thermal-induced heterogeneity. Finite Elem Anal Des 101:46–57

    Article  Google Scholar 

  • Denia FD, Selamet A, Fuenmayor FJ, Kirby R (2007) Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. J Sound Vib 302:1000–1017

    Article  Google Scholar 

  • Denia FD, Selamet A, Martínez MJ, Torregrosa AJ (2006) Hybrid mufflers with short lateral chambers: analytical, numerical and experimental studies. In: 13th International Congress on Sound and Vibration (ICSV 13) Vienna

  • Fok VA (1963) in Russian. Alternatively, see S.N. Rschevkin, A course of lectures on the theory of sound, Pergamon, London

  • Ingard KU (1953) On the design of acoustic resonators. J Acoust Soc Am 25:1037–1061

    Article  Google Scholar 

  • Jensen JS (2012) Topology optimization. In: Romeo F, Ruzzene M (eds) Wave Propagation in Linear and Nonlinear Periodic Media. CISM Courses and Lectures, vol 540. Springer, Vienna

  • Kirby R, Cummings A (1999) Prediction of the bulk acoustic properties of fibrous materials at low frequencies. Appl Acoust 56:101–125

    Article  Google Scholar 

  • Kirby R, Denia FD (2007) Analytic mode matching for a circular dissipative muffler containing mean flow and a perforated pipe. J Acoust Soc Am 122:3471–3482

    Article  Google Scholar 

  • Kirby R, Williams PT, Hill J (2013) The effect of temperature on the acoustic performance of splitter silencers. In: 42nd International Congress and Exposition on Noise Control Engineering – INTERNOISE, 7, pp 5826–5833

  • Lee JS, Göransson P, Kim YY (2015) Topology optimization for three-phase materials distribution in a dissipative expansion chamber by unified multiphase modeling approach. Comput Methods Appl Mech Eng 287:191–211

    Article  MathSciNet  Google Scholar 

  • Lee JW (2015) Optimal topology of reactive muffler achieving target transmission loss values: Design and experiment. Appl Acoust 88:104–113

    Article  Google Scholar 

  • Lee JW, Kim YY (2009) Topology optimization of muffler internal partitions for improving acoustical attenuation performance. Int J Numer Methods Eng 80:455–477

    Article  Google Scholar 

  • Lee SH, Ih JG (2003) Empirical model of the acoustic impedance of a circular orifice in grazing mean flow. J Acoust Soc Am 114:98–113

    Article  Google Scholar 

  • Munjal ML (2014) Acoustics of Ducts and Mufflers, John Wiley & Sons, 2nd Edn

  • Peat KS, Rathi KL (1995) A finite element analysis of the convected acoustic wave motion in dissipative mufflers. J Sound Vib 184:529–545

    Article  Google Scholar 

  • Pierce AD (1990) Wave equation for sound in fluids with unsteady inhomogeneous flow. J Acoust Soc Am 87:2292–2299

    Article  Google Scholar 

  • Rao SS (2011) The Finite Element Method in Engineering, Butterworth-Heinemann. 5th Edition

  • Sánchez-Orgaz EM (2016) Advanced numerical techniques for the acoustic modelling of materials and noise control devices in the exhaust system of internal combustion engines, Ph. D, Thesis, Universitat Politècnica de València

  • Selamet A, Lee IJ, Huff NT (2003) Acoustic attenuation of hybrid mufflers. J Sound Vib 262:509–527

    Article  Google Scholar 

  • Selamet A, Xu MB, Lee IJ, Huff NT (2005) Dissipative expansion chambers with two concentric layers of fibrous material. International Journal of Vehicle Noise and Vibration 1:341– 357

    Article  Google Scholar 

  • Selamet A, Xu MB, Lee IJ, Huff NT (2006) Effect of voids on the acoustics of perforated dissipative mufflers. International Journal of Vehicle Noise and Vibration 2:357–372

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055

    Article  MathSciNet  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance optimization. Struct Multidiscip Optim 22:116–124

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359– 373

    Article  MathSciNet  Google Scholar 

  • Williams PT, Kirby R, Malecki C, Hill J (2014) Measurement of the bulk acoustic properties of fibrous materials at high temperatures. Appl Acoust 77:29–36

    Article  Google Scholar 

  • Yedeg EL, Wadbro E, Berggren M (2016) Interior layout topology optimization of a reactive muffler. Struct Multidiscip Optim 53:645–656

    Article  MathSciNet  Google Scholar 

  • Yoon GH (2013) Acoustic topology optimization of fibrous material with Delany–Bazley empirical material formulation. J Sound Vib 332:1172–1187

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The Finite Element Method: its Basis and Fundamentals. Elsevier Butterworth-Heinemann, Burlington

    MATH  Google Scholar 

  • Zoutendijk G (1960) Methods of Feasible Directions. Elsevier, Amsterdam

    MATH  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación and the European Regional Development Fund (projects TRA2017-84701-R and DPI2017-89816-R), as well as Generalitat Valenciana (project Prometeo/2016/007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ferrándiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The optimized fibre density layouts relating to Designs 1-3 shown in Figs. 511 and 14, are accessible in http://aim.upv.es/doc/SMO-TO-mufflers-replication-of-results.xlsx. Additionally, the TL prediction for Designs 1-4 shown in Figs. 71516 and 19 respectively, are provided in numerical form in the same link.

Additional information

Responsible Editor: Anton Evgrafov

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Differentiation of the global matrix κ with respect to the design variables

Appendix: Differentiation of the global matrix κ with respect to the design variables

In this appendix, the expressions of each of the components of κ are differentiated analytically with respect to each of the design variables considered in this study.

1.1 A.1 Calculation of κ/ρb

Differentiating the global matrix κ in (54) with respect to the bulk density ρb assigned to the elements \(e=1,...,N^{e}_{\rho }\), one obtains:

$$ \frac{\partial \boldsymbol{\kappa}}{\partial \rho_{b}} = \frac{\partial \mathbf{K}}{\partial \rho_{b}} +j\omega \frac{\partial \mathbf{C}}{\partial \rho_{b}} -\omega^{2} \frac{\partial \mathbf{M}}{\partial \rho_{b}} \ , $$
(61)

where, according to (24), (25) and (3337), the terms considered in order to build the global matrices are:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{K}_{m}}{\partial \rho_{b}} &=& \displaystyle\sum\limits_{e=1}^{N_{\rho}^{e}} {\int}_{\mathit{\Omega}_{\rho}^{e}} \frac{-\partial \rho_{m} / \partial \rho_{b}}{{\rho_{b}^{2}}} \left( \nabla \mathbf{N} \right)^{T} \left( \nabla \mathbf{N} \right) \text{ d} \mathit{\Omega} \ , \end{array} $$
(62)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{M}_{m}}{\partial \rho_{b}} &=& \displaystyle\sum\limits_{e=1}^{N_{\rho}^{e}} {\int}_{\mathit{\Omega}_{\rho}^{e}} \left( - \frac{\partial \rho_{m} / \partial \rho_{b} }{{\rho_{m}^{2}} {c_{m}^{2}}} - 2 \frac{\partial c_{m} / \partial \rho_{b} }{\rho_{m} {c_{m}^{3}}} \right) \mathbf{N}^{T} \mathbf{N} \text{ d} \mathit{\Omega} \end{array} $$
(63)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{K}_{aa}^{Z_{p}}}{\partial \rho_{b}} &=& \sum\limits_{e=1}^{N_{\rho}^{e}} {\int}_{\mathit{\Gamma}_{\rho}^{e} \cap \mathit{\Gamma}_{p}} -\frac{{\rho_{0}^{2}} U_{mf} \partial \tilde{Z}_{p} / \partial \rho_{b}}{\tilde{Z}_{p}^{2}} \mathbf{N}^{T} \frac{\partial \mathbf{N}}{\partial x} \text{ d} \mathit{\Gamma} \ , \end{array} $$
(64)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{K}_{am}^{Z_{p}}}{\partial \rho_{b}} &=& \sum\limits_{e=1}^{N_{\rho}^{e}} {\int}_{\mathit{\Gamma}_{\rho}^{e} \cap \mathit{\Gamma}_{p}} -\frac{\rho_{0} \partial \tilde{Z}_{p} / \partial \rho_{b}}{\tilde{Z}_{p}^{2}} \mathbf{N}^{T} \mathbf{N} \text{ d} \mathit{\Gamma} \ , \end{array} $$
(65)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{C}_{aa}^{Z_{p}}}{\partial \rho_{b}} &= &\sum\limits_{e=1}^{N_{\rho}^{e}} {\int}_{\mathit{\Gamma}_{\rho}^{e} \cap \mathit{\Gamma}_{p}} -\frac{{\rho_{0}^{2}} \partial \tilde{Z}_{p} / \partial \rho_{b}}{\tilde{Z}_{p}^{2}} \mathbf{N}^{T} \mathbf{N} \text{ d} \mathit{\Gamma} \ , \end{array} $$
(66)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{C}_{mm}^{Z_{p}}}{\partial \rho_{b}} &=& \sum\limits_{e=1}^{N_{\rho}^{e}} {\int}_{\mathit{\Gamma}_{\rho}^{e} \cap \mathit{\Gamma}_{p}}-\frac{ \partial \tilde{Z}_{p} / \partial \rho_{b} }{\tilde{Z}_{p}^{2}} \mathbf{N}^{T} \mathbf{N} \text{ d} \mathit{\Gamma} \ , \end{array} $$
(67)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{C}_{ma}^{Z_{p}}}{\partial \rho_{b}} &=& \sum\limits_{e=1}^{N_{\rho}^{e}} {\int}_{\mathit{\Gamma}_{\rho}^{e} \cap \mathit{\Gamma}_{p}} -\frac{\rho_{0} U_{mf} \partial \tilde{Z}_{p} / \partial \rho_{b} }{\tilde{Z}_{p}^{2}} \mathbf{N}^{T} \frac{\partial \mathbf{N}}{\partial x} \text{ d} \mathit{\Gamma} \ , \end{array} $$
(68)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{M}_{ma}^{Z_{p}}}{\partial \rho_{b}} &=& \sum\limits_{e=1}^{N_{\rho}^{e}} {\int}_{\mathit{\Gamma}_{\rho}^{e} \cap \mathit{\Gamma}_{p}} -\frac{\rho_{0} \partial \tilde{Z}_{p} / \partial \rho_{b} }{\tilde{Z}_{p}^{2}} \mathbf{N}^{T} \mathbf{N} \text{ d} \mathit{\Gamma} \ . \end{array} $$
(69)

Using the equivalent acoustic properties detailed in (5) and (6), the derivatives of ρm and cm with respect to ρb can be obtained as:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \rho_{m} }{\partial \rho_{b}} (\mathbf{x}) \!&=&\! \frac{1}{c_{m} (\mathbf{x})^{2}} \left( \frac{\partial Z_{m}}{\partial \rho_{b}} (\mathbf{x})c_{m} (\mathbf{x}) - Z_{m} (\mathbf{x})\frac{\partial c_{m}}{\partial \rho_{b}} (\mathbf{x})\right), \end{array} $$
(70)
$$ \begin{array}{@{}rcl@{}} \frac{\partial c_{m}}{\partial \rho_{b}} (\mathbf{x}) &=& -\frac{1}{k_{m} (\mathbf{x})^{2}}\frac{\partial k_{m}}{\partial \rho_{b}} (\mathbf{x}) \ , \end{array} $$
(71)

whereas according to (3) and (4), it can be obtained:

$$ \begin{array}{@{}rcl@{}} \frac{\partial Z_{m} }{\partial \rho_{b}} (\mathbf{x})&=&Z_{0} (\mathbf{x})\left( 1+a_{5} a_{6}\xi (\mathbf{x})^{a_{6}-1} - j a_{7} a_{8} \xi (\mathbf{x})^{a_{8}-1}\right) \frac{\partial \xi }{\partial \rho_{b}} (\mathbf{x}) \ ,\\ \end{array} $$
(72)
$$ \begin{array}{@{}rcl@{}} \frac{\partial k_{m} }{\partial \rho_{b}} (\mathbf{x})&=&k_{0} (\mathbf{x})\left( 1+a_{3} a_{4} \xi (\mathbf{x})^{a_{4}-1} - j a_{1} a_{2}\xi (\mathbf{x})^{a_{2}-1}\right) \frac{\partial \xi }{\partial \rho_{b}} (\mathbf{x}) \ .\\ \end{array} $$
(73)

Taking into account the thermal effects described in Christie’s power law recalled in (2), the derivative of the frequency parameter with respect to ρb is

$$ \frac{\partial \xi }{\partial \rho_{b}} (\mathbf{x}){}={}\frac{-A_{1} A_{2} \rho_{b} \left( \mathbf{x}\right)^{A_{2}-1}\rho_{0} (\mathbf{x})f}{R^{2} (\mathbf{x})} {}\left( \frac{T(\mathbf{x})+273.15}{T_{0}+273.15} \right)^{0.6}. $$
(74)

On the other hand, differentiating (40), \(\partial \tilde {Z}_{p} / \partial \rho _{b}\) can be obtained as:

$$ \frac{\partial \tilde{Z}_{p} (x)}{\partial \rho_{b}}= Z_{0}(x) \frac{ j 0.425 k_{0} (x) d_{h} / \rho_{0} (x) F (\sigma)}{\sigma} \frac{\partial \rho_{m}}{\partial \rho_{b}} (\mathbf{x})\ . $$
(75)

1.2 A.2 Calculation of κ/Lx

In Section 5.3, rings of absorbent material are defined as areas with constant ρb, and the dimensions of these are also subject to modification. Cartesian element grids are implemented within each ring. For the elements within a certain ring, \(e=1,...,{N^{e}_{m}}\), and the elements within the corresponding duct zone underneath, \(e=1,...,{N^{e}_{a}}\), the velocity field at the element integration points due to the modification of the ring length Lx must be taken into account during the computation of the terms listed below:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{K}_{a}}{\partial L_{x}} &=& \sum\limits_{e=1}^{{N_{a}^{e}}} {\int}_{{\mathit{\Omega}_{a}^{e}}} \rho_{0} \left( \left( \frac{\partial\left( \nabla \mathbf{N} \right)^{T}}{\partial L_{x}} \mathbf{M} \left( \nabla \mathbf{N} \right) + \left( \nabla \mathbf{N} \right)^{T} \mathbf{M} \frac{\partial \left( \nabla \mathbf{N} \right)}{\partial L_{x}} \right) \text{d}\mathit{\Omega} \right. \\ & &\left. + \left( \nabla \mathbf{N} \right)^{T} \mathbf{M} \left( \nabla \mathbf{N} \right) \frac{\partial \left( \text{d}\mathit{\Omega} \right)}{\partial L_{x}} \right) \ , \end{array} $$
(76)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{M}_{a}}{\partial L_{x}} &=& \sum\limits_{e=1}^{{N_{a}^{e}}} {\int}_{{\mathit{\Omega}_{a}^{e}}} \frac{\rho_{0} \mathbf{N}^{T} \mathbf{N} }{{c_{0}^{2}}} \frac{\partial \left( \text{d}\mathit{\Omega} \right)}{\partial L_{x}} \ , \end{array} $$
(77)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{K}_{m}}{\partial L_{x}} &=& \displaystyle{\sum}_{e=1}^{{N_{m}^{e}}} {\int}_{{\mathit{\Omega}_{m}^{e}}} \frac{1}{\rho_{m}} \left( \left( \frac{\partial \left( \nabla \mathbf{N} \right)^{T}}{\partial L_{x}} \left( \nabla \mathbf{N} \right) + \left( \nabla \mathbf{N} \right)^{T} \frac{\partial\left( \nabla \mathbf{N} \right)}{\partial L_{x}} \right) \text{d}\mathit{\Omega} \right. \\ && \left. + \left( \nabla \mathbf{N} \right)^{T} \left( \nabla \mathbf{N} \right) \frac{\partial \left( \text{d}\mathit{\Omega} \right)}{\partial L_{x}} \right) \ , \end{array} $$
(78)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{M}_{m}}{\partial L_{x}} & =& \displaystyle{\sum}_{e=1}^{{N_{m}^{e}}} {\int}_{{\mathit{\Omega}_{m}^{e}}} \frac{\mathbf{N}^{T} \mathbf{N}}{\rho_{m} {c_{m}^{2}}} \frac{\partial\left( \text{d}\mathit{\Omega} \right)}{\partial L_{x}} \ , \end{array} $$
(79)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{K}_{aa}^{Z_{p}}}{\partial L_{x}} &=& {\sum}_{e=1}^{{N_{a}^{e}}} {\int}_{{\mathit{\Gamma}_{a}^{e}} \cap \mathit{\Gamma}_{p}} \frac{{\rho_{0}^{2}} U_{mf} \mathbf{N}^{T}}{\tilde{Z}_{p}} \left( \frac{\partial\left( \partial \mathbf{N}/\partial x \right)}{\partial L_{x}} \text{d} \mathit{\Gamma} + \frac{\partial \mathbf{N}}{\partial x} \frac{\partial\left( \text{d} \mathit{\Gamma} \right)}{\partial L_{x}} \right) \ ,\\ \end{array} $$
(80)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{K}_{am}^{Z_{p}}}{\partial L_{x}} &=& {\sum}_{e=1}^{{N_{a}^{e}}} {\int}_{{\mathit{\Gamma}_{a}^{e}} \cap \mathit{\Gamma}_{p}} \frac{\rho_{0}\mathbf{N}^{T} \mathbf{N} }{\tilde{Z}_{p}} \frac{\partial\left( \text{d} \mathit{\Gamma} \right)}{\partial L_{x}} \ , \end{array} $$
(81)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{C}_{aa}^{Z_{p}}}{\partial L_{x}} &=& {\sum}_{e=1}^{{N_{a}^{e}}} {\int}_{{\mathit{\Gamma}_{a}^{e}} \cap \mathit{\Gamma}_{p} } \frac{{\rho_{0}^{2}} \mathbf{N}^{T} \mathbf{N}}{\tilde{Z}_{p}} \frac{\partial\left( \text{d} \mathit{\Gamma} \right)}{\partial L_{x}} \ , \end{array} $$
(82)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{C}_{mm}^{Z_{p}}}{\partial L_{x}} &= &{\sum}_{e=1}^{{N_{m}^{e}}} {\int}_{{\mathit{\Gamma}_{m}^{e}} \cap \mathit{\Gamma}_{p} } \frac{\mathbf{N}^{T} \mathbf{N} }{\tilde{Z}_{p}} \frac{\partial\left( \text{d} \mathit{\Gamma} \right)}{\partial L_{x}} \ , \end{array} $$
(83)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{C}_{ma}^{Z_{p}}}{\partial L_{x}} &= &{\sum}_{e=1}^{{N_{m}^{e}}} {\int}_{{\mathit{\Gamma}_{m}^{e}} \cap \mathit{\Gamma}_{p}} \frac{\rho_{0} U_{mf} \mathbf{N}^{T}}{\tilde{Z}_{p}} \!\left( \frac{\partial \left( \partial \mathbf{N}/\partial x \right)}{\partial L_{x}} \text{d} \mathit{\Gamma} + \frac{\partial \mathbf{N}}{\partial x} \frac{\partial\left( \text{d} \mathit{\Gamma} \right)}{\partial L_{x}} \right) , \end{array} $$
(84)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{M}_{ma}^{Z_{p}}}{\partial L_{x}} &=& {\sum}_{e=1}^{{N_{m}^{e}}} {\int}_{{\mathit{\Gamma}_{m}^{e}} \cap \mathit{\Gamma}_{p}} \frac{\rho_{0} \mathbf{N}^{T} \mathbf{N}}{\tilde{Z}_{p}} \frac{\partial\left( \text{d} \mathit{\Gamma} \right) }{\partial L_{x}} \ . \end{array} $$
(85)

1.3 A.3 Calculation of κ/Lr

In order to compute the derivative of the chamber terms with respect to the chamber dimension Lr = RcRt (see Figs. 3 and 17), the velocity field generated by Lr must be taken into account, but also the axisymmetric integration effect must be considered when computing \(\partial \left (\text {d}\mathit {\Omega } \right ) / \partial L_{r}\). The terms are given by the expressions:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{K}_{m}}{\partial L_{r}} &=& \displaystyle\sum\limits_{e=1}^{{N_{m}^{e}}} {\int}_{{\mathit{\Omega}_{m}^{e}}} \frac{1}{\rho_{m}} \left( \left( \frac{\partial \left( \nabla \mathbf{N} \right)^{T}}{\partial L_{r}} \left( \nabla \mathbf{N} \right) + \left( \nabla \mathbf{N} \right)^{T} \frac{\partial\left( \nabla \mathbf{N} \right)}{\partial L_{r}} \right) \text{d}\mathit{\Omega} \right.\\ && \left. + \left( \nabla \mathbf{N} \right)^{T} \left( \nabla \mathbf{N} \right) \frac{\partial \left( \text{d}\mathit{\Omega} \right)}{\partial L_{r}} \right) \ , \end{array} $$
(86)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \mathbf{M}_{m}}{\partial L_{r}} & =& \displaystyle\sum\limits_{e=1}^{{N_{m}^{e}}} {\int}_{{\mathit{\Omega}_{m}^{e}}} \frac{\mathbf{N}^{T} \mathbf{N}}{\rho_{m} {c_{m}^{2}}} \frac{\partial\left( \text{d}\mathit{\Omega} \right)}{\partial L_{r}} \ . \end{array} $$
(87)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrándiz, B., Denia, F.D., Martínez-Casas, J. et al. Topology and shape optimization of dissipative and hybrid mufflers. Struct Multidisc Optim 62, 269–284 (2020). https://doi.org/10.1007/s00158-020-02490-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02490-x

Keywords

Navigation