Skip to main content
Log in

An efficient evolutionary structural optimization method for multi-resolution designs

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a computationally efficient multi-resolution topology optimization framework by establishing a novel bi-directional evolutionary structure optimization (BESO) method based on extended finite element method (XFEM). In the proposed framework, the high-resolution designs preserving the topological complexity can be obtained with low degree of freedoms (DOFs). The implementation of the presented multi-resolution optimization framework takes good use of the ability of XFEM at accurately modeling material discontinuities within one element. On the basis of XFEM, a strategy of triangulated partition and a new material interpolation model are introduced to represent the finer material distribution. We employ the coarser finite element (FE) mesh to perform the finite element analysis, the sub-parts partitioned from finite elements to describe material properties and the nodal design variables to perform the optimization. To circumvent artificially stiff patterns, a modified sensitivity filter is applied to regularize the solution. The effectiveness and high efficiency of the presented approach are highlighted by typical 2D and 3D examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abdi M (2015) Evolutionary topology optimization of continuum structures using X-FEM and isovalues of structural performance. University of Nottingham

  • Azad SK, Akıs T (2018) Automated selection of optimal material for pressurized multi-layer composite tubes based on an evolutionary approach. Neural Comput Applic 29:405–416

    Article  Google Scholar 

  • Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84–86

    Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    MATH  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Borrvall T, Petersson J (2001) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229

    Article  MATH  Google Scholar 

  • Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196

    Article  MATH  Google Scholar 

  • Fu Y, Rolfe B, Chiu L, Wang Y, Huang X, Ghabraie K (2019) Design and experimental validation of self-supporting topologies for additive manufacturing. Virtual Phys Prototyp 14(4):382–394

  • Groen JP, Langelaar M, Sigmund O, Ruess M (2016) Higher-order multi-resolution topology optimization using the finite cell method. Int J Numer Methods Eng 110:903–920

    Article  MathSciNet  Google Scholar 

  • Gibson I, Rosen DW, Stucker B (2004) Additive manufacturing technologies. Springer, New York, p 17

    Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009

  • Hasancebi O, Azad SK (2015) Adaptive dimensional search: a new metaheuristic algorithm for discrete truss sizing optimization. Comput Struct 154:1–16

    Article  Google Scholar 

  • Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049

    Article  Google Scholar 

  • Huang X, Xie YM (2010) Evolutionary topology optimization of continuum structures: methods and applications. John Wiley & Sons

  • Huang G, Wang H, Li G (2014) A reanalysis method for local modification and the application in large-scale problems. Struct Multidiscip Optim 49(6):915–930

    Article  Google Scholar 

  • Kirsch U (1993) Efficient reanalysis for topological optimization. Struct Multidiscip Optim 6(3):143–150

    Article  MathSciNet  Google Scholar 

  • Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41(9–10):2623–2641

    Article  MATH  Google Scholar 

  • Keshavarzzadeh V, Kirby RM, Narayan A (2019) Parametric topology optimization with multiresolution finite element models. Int J Numer Methods Eng 119(7):567–589

    Article  MathSciNet  Google Scholar 

  • Long K, Gu C, Wang X, Liu J, Du Y, Chen Z, Saeed N (2019) A novel minimum weight formulation of topology optimization implemented with reanalysis approach. Int J Numer Methods Eng 120(5):756–579

  • Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving Morphable component-based framework. J Appl Mech 86(1):011–004

  • Liu P, Luo Y, Kang Z (2016a) Multi-material topology optimization considering interface behavior via XFEM and level set method. Comput Methods Appl Mech Eng 245-246:75–89

    MathSciNet  MATH  Google Scholar 

  • Liu J, Wen G, Xie Y (2016b) Layout optimization of continuum structures considering the probabilistic and fuzzy directional uncertainty of applied loads based on the cloud model. Struct Multidiscip Optim 53(1):81–100

    Article  MathSciNet  Google Scholar 

  • Liu C, Zhu Y, Sun Z, Li D, Du Z, Zhang W et al (2018) An efficient moving morphable component (mmc)-based approach for multi-resolution topology optimization. Struct Multidiscip Optim 58:2455–2479

    Article  MathSciNet  Google Scholar 

  • Liu H, Tian Y, Zong H, Ma Q, Wang M, Zhang L (2019) Fully parallel level set method for large-scale structural topology optimization. Comput Struct 221:13–27

    Article  Google Scholar 

  • Martínez-Frutos J, Martínez-Castejón PJ, Herrero-Pérez D (2017) Efficient topology optimization using GPU computing with multilevel granularity. Adv Eng Softw 106:47–62

    Article  Google Scholar 

  • Melenk JM, BabusKa I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  MathSciNet  MATH  Google Scholar 

  • Meng L, Zhang W, Quan D, Shi G, Tang L, Hou Y, Gao T (2019) From topology optimization design to additive manufacturing: today’s success and tomorrow’s roadmap. Arch Comput Meth Eng:1–26

  • Michell AGM (1904) The limit of economy of material in frame structures. Philos Mag 8:589–597

    Article  MATH  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2009) A computational paradigm for multi-resolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525–539

    Article  MATH  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multi-resolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92(6):507–530

    Article  MATH  Google Scholar 

  • Osher S (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048

    Article  MATH  Google Scholar 

  • Ram L, Sharma D (2017) Evolutionary and GPU computing for topology optimization of structures. Swarm Evol Comput 35:1–13

    Article  Google Scholar 

  • Rannou J, Gravouil A, Baïetto-Dubourg MC (2009) A local multigrid XFEM strategy for 3D crack propagation. Int J Numer Methods Eng 77(4):581–600

    Article  MATH  Google Scholar 

  • Sigmund O (2000) Topology optimization: a tool for the tailoring of structures and materials. Philos Trans R Soc Math Phys Eng Sci 358(1765):211–227

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards. Mesh-dependencies and local minima. Struct Multidiscip Optim 16(1):68–75

    Article  Google Scholar 

  • Sigmund O, Aage N, Andreassen E (2016) On the (non-)optimality of Michell structures. Struct Multidiscip Optim 54:361–373

    Article  MathSciNet  Google Scholar 

  • Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200

    Article  MathSciNet  MATH  Google Scholar 

  • Wadbro E, Berggren M (2009) Megapixel topology optimization on a graphics processing unit. SIAM Rev 51(4):707–721

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Kang Z, He Q (2013) An adaptive refinement approach for topology optimization based on separated density field description. Comput Struct 117:10–22

    Article  Google Scholar 

  • Wang X, Long K, Hoang VN, Hu P (2018) An explicit optimization model for integrated layout design of planar multi-component systems using moving morphable bars. Comput Methods Appl Mech Eng 342:46–70

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Liu J, Wen G (2019) An efficient evolutionary structural optimization method with smooth edges based on the game of building blocks. Eng Optimi 51(2):2089–2108

  • Wei P, Wang M, Xing X (2010) A study on XFEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719

    Article  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Zhang W, Zhou J, Zhu Y, Guo X (2017) Structural complexity control in topology optimization via moving morphable component (MMC) approach. Struct Multidiscip Optim 56(3):535–552

    Article  MathSciNet  Google Scholar 

  • Zuo Z, Xie Y (2014) Evolutionary topology optimization of continuum structures with a global displacement control. Comput Aided Des 56:58–67

    Article  Google Scholar 

  • Zuo W, Fang J, Feng Z (2019) Reanalysis method for second derivatives of static displacement. Int J Comput Methods. https://doi.org/10.1142/S0219876219500567

Download references

Funding

This work was supported by the Key Program of National Natural Science Foundation of China (No. 11832009), the National Natural Science Foundation of China (No.11672104, 11902085), and the Chair Professor of Lotus Scholars Program in Hunan province (No.XJT2015408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The presented approach is a part of a new project such that we can not provide the source code. But, in order to help readers to reproduce the results, we attach the main framework of the source codes in the appendix. At the same time, numerical data for plots corresponding to Figs. 11, 15, 17, 19 and 20 are provided as supplementary material. Then, if the information provided in the paper is not sufficient, the readers can contact the authors for further explanations.

Additional information

Responsible Editor: Ji-Hong Zhu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Main framework of the source code (referring to the paper of Andreassen et al. 2011)

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, J. & Wen, G. An efficient evolutionary structural optimization method for multi-resolution designs. Struct Multidisc Optim 62, 787–803 (2020). https://doi.org/10.1007/s00158-020-02536-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02536-0

Keywords

Navigation