Skip to main content
Log in

Fatigue crack propagation behaviour of carboxyl-terminated polybutadiene solid rocket propellants

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The fatigue crack growth behavior of composite solid carboxyl-terminated polybutadiene (CTPB) base propellants from a two stage-rocket has been analyzed. Both motors presented similar compositional percentage of the different constituents but while the booster motor presented aluminum as fuel and fine oxidizer particles, the sustainer motor presented nitroguanidine as fuel and coarse rigid inorganic particles. The fracture characterization revealed that the critical energy release rate values obtained from the grains of the booster motor were higher than those computed from the sustainer motor. The fatigue crack growth behavior of the propellant grains under study was comparable to that shown in rubber and the fatigue crack growth curves obtained from the booster motor were below those from the sustainer motor. The micromechanism of failure in both motors was microvoid nucleation and growth till the formation of a macro-crack capable of subcritical advancement. In the grains from the booster motor, the nucleation and progression of damage occurred through the matrix with fracture surfaces plain and with no trace of oxidizer particles. Instead, in the propellant grains from the sustainer motor, the damage was generated in the particle–binder interface and the progression occurred along these interfaces leading to an abrupt fracture surface with discernible oxidizer particles. The mechanism of failure in the booster motor led to a better fatigue crack growth behavior and the irregular crack advancement in the sustainer motor implied a lower exponent of the crack growth rate to the energy release rate power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

Authors are indebted to Ministerio de Economía y Competitividad of Spain for their financial support through project DPI2016-80389-C2-1-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salazar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, R., Salazar, A. & Rodríguez, J. Fatigue crack propagation behaviour of carboxyl-terminated polybutadiene solid rocket propellants. Int J Fract 223, 3–15 (2020). https://doi.org/10.1007/s10704-020-00435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-020-00435-5

Keywords

Navigation