Skip to main content
Log in

Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose

  • Bioenergy/Biofuels/Biochemicals - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A systematic adaptive laboratory evolution strategy was employed to develop a potential Zymomonas mobilis strain with the ability to co-utilize glucose and xylose. Z. mobilis ATCC ZW658, a recombinant xylose fermenting strain, was subjected to adaptive laboratory evolution over a period of 200 days under strict selection pressure of increasing concentration of xylose. The evolved strain exhibited 1.65 times increase in the overall specific xylose utilization rate when compared with the parent strain. Furthermore, the strain displayed significantly improved performance in terms of co-fermentation of xylose in the presence of glucose with specific glucose and xylose utilization rate of 1.24 g g−1 h−1 and 1.34 g g−1 h−1, respectively. Altered phenotypic response of the evolved strain, in terms of improved xylose utilization, co-utilization of mixed sugars, enhanced growth, ethanol production, and reduced xylitol production has been explained by novel mutations, identified using next-generation sequencing, in xylose assimilating, metabolizing, and crucial regulatory pathway genes and key enzyme activity assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang S, Fei Q, Zhang Y et al (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 9:699–717. https://doi.org/10.1111/1751-7915.12408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nieves LM, Panyon LA, Wang X (2015) Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol 3:1–10. https://doi.org/10.3389/fbioe.2015.00017

    Article  Google Scholar 

  3. He M, Wu B, Qin H et al (2014) Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuels 7:101. https://doi.org/10.1186/1754-6834-7-101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang M, Eddy C, Deanda K, et al (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science (80) 267:240–243. https://doi.org/10.1126/science.267.5195.240

  5. Mohagheghi A, Evans K, Chou YC, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic dna-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol Part A Enzym Eng Biotechnol 98–100:885–898. https://doi.org/10.1385/ABAB:98-100:1-9:885

    Article  Google Scholar 

  6. Viitanen P V, Cutchen CMM, Li X, et al (2008) Ethanol production in fermentation of mixed sugars containing xylose. 1. https://www.google.com/patents/US7629156

  7. Dunn KL, Rao CV (2015) High-throughput sequencing reveals adaptation-induced mutations in pentose-fermenting strains of Zymomonas mobilis. Biotechnol Bioeng 112:2228–2240. https://doi.org/10.1002/bit.25631

    Article  CAS  PubMed  Google Scholar 

  8. Dunn KL, Rao CV (2014) Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl Microbiol Biotechnol 98:6897–6905. https://doi.org/10.1007/s00253-014-5812-6

    Article  CAS  PubMed  Google Scholar 

  9. Jeon YJ, Svenson CJ, Rogers PL (2005) Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis. FEMS Microbiol Lett 244:85–92. https://doi.org/10.1016/j.femsle.2005.01.025

    Article  CAS  PubMed  Google Scholar 

  10. Ren C, Chen T, Zhang J et al (2009) An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microb Cell Fact 8:1–9. https://doi.org/10.1186/1475-2859-8-66

    Article  CAS  Google Scholar 

  11. Kim JH, Block DE, Mills DA (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 88:1077–1085. https://doi.org/10.1007/s00253-010-2839-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Agrawal M, Mao Z, Chen RR (2011) Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng 108:777–785. https://doi.org/10.1002/bit.23021

    Article  CAS  PubMed  Google Scholar 

  13. Nijland JG, Shin HY, De Jong RM et al (2014) Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels. https://doi.org/10.1186/s13068-014-0168-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Young EM, Tong A, Bui H et al (2014) Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc Natl Acad Sci 111:131–136. https://doi.org/10.1073/pnas.1311970111

    Article  CAS  PubMed  Google Scholar 

  15. Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22:590–594. https://doi.org/10.1016/j.copbio.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  16. Mohagheghi A, Linger JG, Yang S et al (2015) Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate. Biotechnol Biofuels 8:1–9. https://doi.org/10.1186/s13068-015-0233-z

    Article  CAS  Google Scholar 

  17. Bringer-Meyer S, Schimz KL, Sahm H (1986) Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization. Arch Microbiol 146:105–110. https://doi.org/10.1007/BF00402334

    Article  CAS  Google Scholar 

  18. Sandberg TE, Lloyd CJ, Palsson BO, Feist AM (2017) Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00410-17

    Article  PubMed  PubMed Central  Google Scholar 

  19. LaCroix RA, Sandberg TE, O’Brien EJ et al (2015) Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl Environ Microbiol 81:17–30. https://doi.org/10.1128/AEM.02246-14

    Article  CAS  PubMed  Google Scholar 

  20. Gao Q, Zhang M, Mcmillan JD, Kompala DS (2002) Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures. Appl Biochem Biotechnol Part A Enzym Eng Biotechnol 98–100:341–355. https://doi.org/10.1385/ABAB:98-100:1-9:341

    Article  Google Scholar 

  21. Supple SG, Joachimsthal EL, Dunn NW, Rogers PL (2000) Isolation and preliminary characterization of a Zymomonas mobilis mutant with an altered preference for xylose and glucose utilization. Biotechnol Lett 22:157–164. https://doi.org/10.1023/A:1005613912777

    Article  CAS  Google Scholar 

  22. Feng Q, Liu ZL, Weber SA, Li S (2018) Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae. PLoS ONE. https://doi.org/10.1371/journal.pone.0195633

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hunt RC, Simhadri VL, Iandoli M et al (2014) Expos Synonym Mutat. https://doi.org/10.1016/j.tig.2014.04.006

    Article  Google Scholar 

  24. Hossein Khademi SM, Sazinas P, Jelsbak L (2019) Within-host adaptation mediated by intergenic evolution in Pseudomonas aeruginosa. Genome Biol Evol 11:1385–1397. https://doi.org/10.1093/gbe/evz083

    Article  Google Scholar 

  25. Jojima T, Fujii M, Mori E et al (2010) Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid l-alanine under oxygen deprivation. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-010-2493-7

    Article  PubMed  Google Scholar 

  26. Bhattacharya R, Rose PW, Burley SK, Prlić A (2017) Impact of genetic variation on three dimensional structure and function of proteins. PLoS ONE. https://doi.org/10.1371/journal.pone.0171355

    Article  PubMed  PubMed Central  Google Scholar 

  27. Foss EJ, Radulovic D, Shaffer SA et al (2011) Genetic variation shapes protein networks mainly through non-transcriptional mechanisms. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001144

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yasukawa K, Inouye K (2007) Improving the activity and stability of thermolysin by site-directed mutagenesis. Biochim Biophys Acta Protein Proteom. https://doi.org/10.1016/j.bbapap.2007.08.002

    Article  Google Scholar 

  29. Salusjärvi L, Poutanen M, Pitkänen JP et al (2003) Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae. Yeast. https://doi.org/10.1002/yea.960

    Article  PubMed  Google Scholar 

  30. Kim IS, Barrow KD, Rogers PL (2000) Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4 (pZB5). Appl Environ Microbiol 66:186–193. https://doi.org/10.1128/AEM.66.1.186-193.2000.Updated

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kannuchamy S, Mukund N, Saleena LM (2016) Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production. BMC Biotechnol 16:34. https://doi.org/10.1186/s12896-016-0260-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Department of Biotechnology, India, under the DBT-PAN IIT Centre for Bioenergy (BT/EB/PAN IIT/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Das.

Ethics declarations

Conflict of interests

All the authors declare that there are no conflicts of interest in publishing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, P., Mukherjee, M., Goswami, G. et al. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose. J Ind Microbiol Biotechnol 47, 329–341 (2020). https://doi.org/10.1007/s10295-020-02270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02270-y

Keywords

Navigation