Skip to main content
Log in

Effects of synaptic integration on the dynamics and computational performance of spiking neural network

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Neurons in the brain receive thousands of synaptic inputs from other neurons. This afferent information is processed by neurons through synaptic integration, which is an important information processing mechanism in biological neural networks. Synaptic currents integrated from spiking trains of presynaptic neurons have complex nonlinear dynamics which endow neurons with significant computational abilities. However, in many computational studies of neural networks, external input currents are often simply taken as a direct current that is static. In this paper, the influences of synaptic and noise external currents on the dynamics of spiking neural network and its computational capability have been investigated in detail. Our results show that due to the nonlinear synaptic integration, both of fast and slow excitatory synaptic currents have much more complex and oscillatory fluctuations than the noise current with the same average intensity. Thus network driven by synaptic external current exhibits remarkably more complex dynamics than that driven by noise external current. Interestingly, the enhancement of network activity is beneficial for information transmission, which is further supported by two computational tasks conducted on the liquid state machine (LSM) network. LSM with synaptic external current displays considerably better performance in both nonlinear fitting and pattern classification than that with noise external current. Synaptic integration can significantly enhance the entropy of activity patterns and computational performance of LSM. Our results demonstrate that the complex dynamics of nonlinear synaptic integration play a critical role in the computational abilities of neural networks and should be more broadly considered in the modelling studies of spiking neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chen MJ, Wang YF, Wang HT, Ren W, Wang XG (2017) Evoking complex neuronal networks by stimulating a single neuron. Nonlinear Dyn 88(4):2491–2501

    Article  Google Scholar 

  • Dan Y, Atick JJ, Reid RC (1996) Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J Neurosci 16(10):3351–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. Methods Neuronal Model Ions Netw 2:1–25

    Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrigan P, Ratliff CP, Klein JM, Peter S, Brainard DH, Balasubramanian V (2010) Design of a trichromatic cone array. Plos Comput Biol 6(2):e1000677

    Article  PubMed  PubMed Central  Google Scholar 

  • Gosak M, Markovič R, Dolenšek J, Slak R, Marjan M et al. (2018) Network science of biological systems at different scales: a review. Phys Life Rev S1571064517301501

  • Gulledge AT, Kampa BM, Stuart GJ (2005) Synaptic integration in dendritic trees. J Neurobiol 64(1):75–90

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Chen M, Perc M, Wu S, Xia C, Zhang Y et al (2016a) Firing regulation of fast-spiking interneurons by autaptic inhibition. Europhys Lett 114(3):30001

    Article  Google Scholar 

  • Guo D, Perc M, Liu T (2018) Functional importance of noise in neuronal information processing. Europhys Lett 124:50001

    Article  Google Scholar 

  • Guo D, Wu S, Chen M, Perc M, Zhang Y, Ma J et al (2016b) Regulation of irregular neuronal firing by autaptic transmission. Sci Rep 6(1):26096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gütig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci 9(3):420–428

    Article  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1990) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 52(1–2):25–71

    Article  CAS  PubMed  Google Scholar 

  • Howard MA, Baraban SC (2016) Synaptic integration of transplanted interneuron progenitor cells into native cortical networks. J Neurophysiol 116(2):472–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häusler S, Markram H, Maass W (2003) Perspectives of the high-dimensional dynamics of neural microcircuits from the point of view of low-dimensional readouts. Complexity 8(4):39–50

    Article  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Justus D, Dalügge D, Bothe S, Fuhrmann F, Hannes C, Kaneko H, Friedrichs D, Sosulina L, Schwarz I, Elliott DA (2017) Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nat Neurosci 20(1):16–19

    Article  CAS  PubMed  Google Scholar 

  • Kumamoto N, Gu Y, Wang J, Jenoschka S, Takemaru K, Levine J, Ge S (2012) A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci 15(3):399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laughlin S (1981) A simple coding procedure enhances a neuron’s information capacity. Zeitschrift fur Naturforschung Sect C Biosci 36(9–10):910–912

    Article  CAS  Google Scholar 

  • Li XM (2011) Cortical oscillations and synaptic plasticity: from a single neuron to neural networks. Hong Kong Polytechnic University, Hung Hom

    Google Scholar 

  • Li XM (2014) Signal integration on the dendrites of a pyramidal neuron model. Cogn Neurodyn 8(1):81–85

    Article  Google Scholar 

  • Li XM, Chen Q, Xue FZ (2016) Bursting dynamics remarkably improve the performance of neural networks on liquid computing. Cogn Neurodyn 10(5):415–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XM, Chen Q, Xue FZ (2017b) Biological modelling of a computational spiking neural network with neuronal avalanches. Philos Trans 375(2096):20160286

    Article  Google Scholar 

  • Li XM, Liu H, Xue FZ, Zhou HJ, Song YD (2017a) Liquid computing of spiking neural network with multi-clustered and active-neuron-dominant structure. Neurocomputing 243:155–165

    Article  Google Scholar 

  • Li XM, Morita K, Robinson HP, Small M (2013) Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. J Neurophysiol 109(11):2739–2756

    Article  PubMed  Google Scholar 

  • Liu SB, Wu Y, Li JJ, Xie Y, Tan N (2013) The dynamic behavior of spiral waves in stochastic Hodgkin–Huxley neuronal networks with ion channel blocks. Nonlinear Dyn 73(1–2):1055–1063

    Article  Google Scholar 

  • Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. Plos Comput Biol 3(1):e165

    Article  PubMed  PubMed Central  Google Scholar 

  • Majhi S, Ber BKa, Ghosh D, Perc M (2019) Chimera states in neuronal networks: a review. Phys Life Rev 28:100–121

    Article  PubMed  Google Scholar 

  • Natschläger T, Maass W, Markram H (2002) The, “liquid computer”: a novel strategy for real-time computing on time series. Special Issue Found Inf Process Telematik 8(1):39–43

    Google Scholar 

  • Neftci EO, Pedroni BU, Siddharth J, Maruan AS, Gert C (2016) Stochastic synapses enable efficient brain-inspired learning machines. Front Neurosci 10:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Shew WL, Yang HD, Yu S, Roy R, Plenz D (2011) Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J Neurosci 31(1):55–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221

    Article  CAS  PubMed  Google Scholar 

  • Sultan S, Li L, Moss J, Petrelli F, Cassá F, Gebara E, Lopatar J, Pfrieger FW, Bezzi P, Bischofberger J (2015) Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 88(5):957–972

    Article  CAS  PubMed  Google Scholar 

  • Van VC, Abbott LF, Ermentrout GB (1994) When Inhibition not Excitation Synchronizes Neural Firing. J Comput Neurosci 1(4):313–321

    Article  Google Scholar 

  • Vargas-Caballero M, Robinson HP (2004) Fast and slow voltage-dependent dynamics of magnesium block in the nmda receptor: the asymmetric trapping block model. J Neurosci 24(27):6171–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4(1):84–97

    Article  Google Scholar 

  • Wang R, Wu Y, Wang L, Du M, Li JJ (2017) Structure and dynamics of self-organized neuronal network with an improved stdp rule. Nonlinear Dyn 88(3):1855–1868

    Article  Google Scholar 

  • Williams SR, Stuart GJ (2002) Synaptic integration. Wiley, New York

    Google Scholar 

  • Yilmaz E, Ozer M, Baysal V, Perc M (2016) Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci Rep 6:30914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz E, Baysal V, Ozer M, Perc M (2015) Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Phys A Stat Mech Appl S0378437115009139

  • Zhou J, Yu W, Li XM, Small M, Lu JA (2009) Identifying the topology of a coupled fitzhugh-nagumo neurobiological network via a pinning mechanism. IEEE Trans Neural Net 20(10):1679–1684

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumin Li.

Ethics declarations

Human participants and/or animals

The authors declare that they have no financial or non-financial competing interests and all of the authors agree to the publication of this paper. This research do not involve any Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Luo, S. & Xue, F. Effects of synaptic integration on the dynamics and computational performance of spiking neural network. Cogn Neurodyn 14, 347–357 (2020). https://doi.org/10.1007/s11571-020-09572-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09572-y

Keywords

Navigation