Skip to main content
Log in

Implicit a posteriori error estimation in cut finite elements

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We describe a strategy for implicit a posteriori error estimation in cut finite elements. Our approach is based on the definition of local residual-driven corrector problems that use a local order elevation of the finite element space to construct a correction of the current approximation. The recovered higher-order accurate approximation is then used to construct error estimation in energy norm. We discuss implications of this scheme in the presence of cut elements, for instance regarding the construction of local corrector regions or the imposition of local boundary conditions. Combining the estimator with the finite cell method and a mesh refinement scheme, we numerically demonstrate its effectivity in terms of predicting the true error and its suitability to steer mesh adaptivity. Our results confirm that the estimation achieves the same effectivity in cut meshes as in standard boundary-fitted meshes, irrespective of the polynomial degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, New York

    Book  MATH  Google Scholar 

  2. Annavarapu C, Hautefeuille M, Dolbow J (2012) A robust Nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 225:44–54

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615

    Article  MATH  Google Scholar 

  4. Babuška I, Strouboulis T, Upadhyay C (1997) A model study of the quality of a posteriori error estimators for finite element solutions of linear elliptic problems, with particular reference to the behavior near the boundary. Int J Numer Methods Eng 40(14):2521–2577

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuvška I, Rheinboldt WC (1978) Error estimates for adaptive finite element computations. SIAM J Numer Anal 15(4):736–754

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandara K, Rüberg T, Cirak F (2016) Shape optimisation with multiresolution subdivision surfaces and immersed finite elements. Comput Methods Appl Mech Eng 300:510–539

    Article  MathSciNet  MATH  Google Scholar 

  7. Bazilevs Y, Hughes T (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26

    Article  MathSciNet  MATH  Google Scholar 

  8. Becker R, Rannacher R (2001) An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer 10:1–102

    Article  MathSciNet  MATH  Google Scholar 

  9. Benedetti A, De Miranda S, Ubertini F (2006) A posteriori error estimation based on the superconvergent recovery by compatibility in patches. Int J Numer Methods Eng 67(1):108–131

    Article  MATH  Google Scholar 

  10. Bernardi C, Hecht F (2002) Error indicators for the mortar finite element discretization of the laplace equation. Math Comput 71(240):1371–1403

    Article  MathSciNet  MATH  Google Scholar 

  11. Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Num Methods Eng 37(3):517–536

    Article  MathSciNet  MATH  Google Scholar 

  12. Boiveau T, Burman E, Claus S, Larson M (2018) Fictitious domain method with boundary value correction using penalty-free nitsche method. J Numer Math 26(2):77–95

    MathSciNet  MATH  Google Scholar 

  13. Boroomand B, Zienkiewicz O (1997) Recovery by equilibrium in patches (REP). Int J Numer Methods Eng 40(1):137–164

    Article  MathSciNet  Google Scholar 

  14. Breitenberger M, Apostolatos A, Philipp B, Wüchner R, Bletzinger KU (2015) Analysis in computer aided design: nonlinear isogeometric b-rep analysis of shell structures. Comput Methods Appl Mech Eng 284:401–457

    Article  MathSciNet  MATH  Google Scholar 

  15. Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: a stabilized Nitsche method. Appl Numer Math 62(4):328–341

    Article  MathSciNet  MATH  Google Scholar 

  16. Burman E, Claus S, Hansbo P, Larson MG, Massing A (2015) CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501

    Article  MathSciNet  MATH  Google Scholar 

  17. Burman E, Elfverson D, Hansbo P, Larson MG, Larsson K (2019) Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions. Comput Methods Appl Mech Eng 350:462–479

    Article  MathSciNet  Google Scholar 

  18. Carstensen C, Hu J (2007) A unifying theory of a posteriori error control for nonconforming finite element methods. Numer Math 107(3):473–502

    Article  MathSciNet  MATH  Google Scholar 

  19. Castellazzi G, De Miranda S, Ubertini F (2010) Adaptivity based on the recovery by compatibility in patches. Finite Elem Anal Des 46(5):379–390

    Article  MATH  Google Scholar 

  20. Causon DM, Ingram DM, Mingham CG (2001) A Cartesian cut cell method for shallow water flows with moving boundaries. Adv Water Resour 24(8):899–911

    Article  Google Scholar 

  21. Chouly F, Fabre M, Hild P, Pousin J, Renard Y (2017) Residual-based a posteriori error estimation for contact problems approximated by nitsches method. IMA J Numer Anal 38(2):921–954

    Article  MathSciNet  MATH  Google Scholar 

  22. de Prenter F, Verhoosel C, van Zwieten G, van Brummelen E (2017) Condition number analysis and preconditioning of the finite cell method. Comput Methods Appl Mech Eng 316:297–327

    Article  MathSciNet  Google Scholar 

  23. de Prenter F, Verhoosel C, van Brummelen E (2019) Preconditioning immersed isogeometric finite element methods with application to flow problems. Comput Methods Appl Mech Eng 348:604–631

    Article  MathSciNet  Google Scholar 

  24. Di Stolfo P, Rademacher A, Schröder A (2019) Dual weighted residual error estimation for the finite cell method. J Numer Math 27(2):101–122

    Article  MathSciNet  MATH  Google Scholar 

  25. Díez P, JoséEgozcue J, Huerta A (1998) A posteriori error estimation for standard finite element analysis. Comput Methods Appl Mech Eng 163(1–4):141–157

    Article  MathSciNet  MATH  Google Scholar 

  26. Díez P, Parés N, Huerta A (2010) Error estimation and quality control. Encyclopedia of Aerospace Engineering

  27. Duczek S, Gabbert U (2016) The finite cell method for polygonal meshes: poly-FCM. Comput Mech 58:587–618

    Article  MathSciNet  MATH  Google Scholar 

  28. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782

    Article  MathSciNet  MATH  Google Scholar 

  29. Efendiev Y, Hou T (2009) Multiscale finite element methods: theory and applications. Springer, Berlin

    MATH  Google Scholar 

  30. Elfverson D, Larson MG, Larsson K (2019) A new least squares stabilized Nitsche method for cut isogeometric analysis. Comput Methods Appl Mech Eng 349:1–16

    Article  MathSciNet  Google Scholar 

  31. Embar A, Dolbow J, Harari I (2010) Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int J Numer Methods Eng 83:877–898

    MathSciNet  MATH  Google Scholar 

  32. Fidkowski KJ, Darmofal DL (2006) Output-based adaptive meshing using triangular cut cells. Tech. rep., Aerospace Computational Design Laboratory, Dept. of Aeronautics

  33. Fidkowski KJ, Darmofal DL (2007) A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier–Stokes equations. J Comput Phys 225(2):1653–1672

    Article  MathSciNet  MATH  Google Scholar 

  34. Fries TP, Omerovic S (2016) Higher-order accurate integration of implicit geometries. Int J Numer Methods Eng 106(1):323–371

    Article  MathSciNet  MATH  Google Scholar 

  35. Gangwar T, Calder J, Takahashi T, Bechtold J, Schillinger D (2018) Robust variational segmentation of 3d bone ct data with thin cartilage interfaces. Med Image Anal 47:95–110

    Article  Google Scholar 

  36. Giles MB, Süli E (2002) Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numer 11:145–236

    Article  MathSciNet  MATH  Google Scholar 

  37. Gomez H, Calo V, Bazilevs Y, Hughes T (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197:4333–4352

    Article  MathSciNet  MATH  Google Scholar 

  38. González-Estrada OA, Nadal E, Ródenas J, Kerfriden P, Bordas SPA, Fuenmayor F (2014) Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Comput Mech 53(5):957–976

    Article  MathSciNet  MATH  Google Scholar 

  39. Greaves DM, Borthwick A (1999) Hierarchical tree-based finite element mesh generation. Int J Numer Methods Eng 45(4):447–471

    Article  MATH  Google Scholar 

  40. Griebel M, Schweitzer M (2004) A particle-partition of unity method. Part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542

    Google Scholar 

  41. Guo Y, Ruess M, Schillinger D (2017) A parameter-free variational coupling approach for trimmed isogeometric thin shells. Comput Mech 59(4):693–715

    Article  MathSciNet  MATH  Google Scholar 

  42. Guo Y, Heller J, Hughes TJ, Ruess M, Schillinger D (2018) Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the step exchange format. Comput Methods Appl Mech Eng 336:39–79

    Article  MathSciNet  Google Scholar 

  43. Han Z, Stoter SK, Wu CT, Cheng C, Mantzaflaris A, Mogilevskaya SG, Schillinger D (2019) Consistent discretization of higher-order interface models for thin layers and elastic material surfaces, enabled by isogeometric cut-cell methods. Comput Methods Appl Mech Eng 350:245–267

    Article  MathSciNet  Google Scholar 

  44. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191:537–552

    MathSciNet  MATH  Google Scholar 

  45. Hartmann R, Houston P (2002) Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J Comput Phys 183(2):508–532

    Article  MathSciNet  MATH  Google Scholar 

  46. Hou T, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134(1):169–189

    Article  MathSciNet  MATH  Google Scholar 

  47. Jiang W, Annavarapu C, Dolbow J, Harari I (2015) A robust Nitsche’s formulation for interface problems with spline-based finite elements. Int J Numer Methods Eng 104(7):676–696

    Article  MathSciNet  MATH  Google Scholar 

  48. Jomo JN, de Prenter F, Elhaddad M, D’Angella D, Verhoosel CV, Kollmannsberger S, Kirschke JS, Nübel V, van Brummelen E, Rank E (2019) Robust and parallel scalable iterative solutions for large-scale finite cell analyses. Finite Elem Anal Des 163:14–30

    Article  Google Scholar 

  49. Joulaian M, Hubrich S, Düster A (2016) Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput Mech 57(6):979–999

    Article  MathSciNet  MATH  Google Scholar 

  50. Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: accurately integrating discontinuous functions in 3D. Comput Methods Appl Mech Eng 309:625–652

    Article  MathSciNet  Google Scholar 

  51. Ladeveze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509

    Article  MathSciNet  MATH  Google Scholar 

  52. Massing A, Schott B, Wall W (2018) A stabilized Nitsche cut finite element method for the Oseen problem. Comput Methods Appl Mech Eng 328:262–300

    Article  MathSciNet  Google Scholar 

  53. Müller B, Kummer F, Oberlack M (2013) Highly accurate surface and volume integration on implicit domains by means of moment-fitting. International Journal for Numerical Methods in Engineering 96(8):512–528

    Article  MathSciNet  MATH  Google Scholar 

  54. Nadal E, Ródenas J, Albelda J, Tur M, Tarancón J, Fuenmayor F (2013) Efficient finite element methodology based on Cartesian grids: application to structural shape optimization. In: Abstract and applied analysis. Article ID 953786

  55. Nemec M, Aftosmis M (2007) Adjoint error estimation and adaptive refinement for embedded-boundary Cartesian meshes. In: 18th AIAA computational fluid dynamics conference, p 4187

  56. Nguyen L, Schillinger D (2018) A multiscale predictor/corrector scheme for efficient elastoplastic voxel finite element analysis, with application to CT-based bone strength prediction. Comput Methods Appl Mech Eng 330:598–628

    Article  MathSciNet  Google Scholar 

  57. Nguyen L, Stoter S, Baum T, Kirschke J, Ruess M, Yosibash Z, Schillinger D (2017) Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures. Int J Numer Methods Biomed Eng. https://doi.org/10.1002/cnm.2880

    Article  MathSciNet  Google Scholar 

  58. Nguyen LH, Schillinger D (2019a) The multiscale finite element method for nonlinear continuum localization problems at full fine-scale fidelity, illustrated through phase-field fracture and plasticity. J Comput Phys 396:129–160

    Article  MathSciNet  Google Scholar 

  59. Nguyen LH, Schillinger D (2019b) A residual-driven local iterative corrector scheme for the multiscale finite element method. J Comput Phys 377:60–88

    Article  MathSciNet  MATH  Google Scholar 

  60. Ohnimus S, Stein E, Walhorn E (2001) Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems. Int J Numer Methods Eng 52(7):727–746

    Article  MathSciNet  MATH  Google Scholar 

  61. Pannachet T, Askes H, Sluys L (2009) p-version error estimation for linear elasticity. Comput Mech 43(5):603–615

    Article  MathSciNet  MATH  Google Scholar 

  62. Parvizian J, Düster A, Rank E (2007) Finite cell method: h- and p-extension for embedded domain methods in solid mechanics. Comput Mech 41:122–133

    Article  MATH  Google Scholar 

  63. Payen DJ, Bathe KJ (2011) The use of nodal point forces to improve element stresses. Comput Struct 89(5–6):485–495

    Article  Google Scholar 

  64. Payen DJ, Bathe KJ (2012) A stress improvement procedure. Comput Struct 112:311–326

    Article  Google Scholar 

  65. Pierce NA, Giles MB (2000) Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev 42(2):247–264

    Article  MathSciNet  MATH  Google Scholar 

  66. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846

    Article  MathSciNet  MATH  Google Scholar 

  67. Schillinger D, Ruess M (2015) The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22(3):391–455

    Article  MathSciNet  MATH  Google Scholar 

  68. Schillinger D, Dede’ L, Scott M, Evans J, Borden M, Rank E, Hughes T (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–250:116–150

    Article  MathSciNet  MATH  Google Scholar 

  69. Schillinger D, Harari I, Hsu MC, Kamensky D, Stoter K, Yu Y, Ying Z (2016) The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Comput Methods Appl Mech Eng 309:625–652

    Article  MathSciNet  Google Scholar 

  70. Sharma R, Zhang J, Langelaar M, van Keulen F, Aragón AM (2018) An improved stress recovery technique for low-order 3D finite elements. Int J Numer Methods Eng 114(1):88–103

    Article  MathSciNet  Google Scholar 

  71. Stavrev A, Nguyen L, Shen R, Varduhn V, Behr M, Elgeti S, Schillinger D (2016) Geometrically accurate, efficient, and flexible quadrature techniques for the tetrahedral finite cell method. Comput Methods Appl Mech Eng 310:646–673

    Article  MathSciNet  Google Scholar 

  72. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  73. Teschemacher T, Bauer A, Oberbichler T, Breitenberger M, Rossi R, Wüchner R, Bletzinger KU (2018) Realization of CAD-integrated shell simulation based on isogeometric B-Rep analysis. Adv Model Simul Eng Sci 5(1):19

    Article  Google Scholar 

  74. Ubertini F (2004) Patch recovery based on complementary energy. Int J Numer Methods Eng 59(11):1501–1538

    Article  MATH  Google Scholar 

  75. Varduhn V, Hsu MC, Ruess M, Schillinger D (2016) The tetrahedral finite cell method: Higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes. Int J Numer Methods Eng 107:1054–1079

    Article  MathSciNet  MATH  Google Scholar 

  76. Wassermann B, Kollmannsberger S, Yin S, Kudela L, Rank E (2019) Integrating CAD and numerical analysis: dirty geometry handling using the finite cell method. Comput Methods Appl Mech Eng 351:808–835

    Article  MathSciNet  Google Scholar 

  77. Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37(20):3417–3440

    Article  MathSciNet  MATH  Google Scholar 

  78. Zander N, Bog T, Kollmannsberger S, Schillinger D, Rank E (2015) Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes. Comput Mech 55(3):499–517

    Article  MathSciNet  MATH  Google Scholar 

  79. Zander ND (2017) Multi-level hp-FEM: dynamically changing high-order mesh refinement with arbitrary hanging nodes. PhD thesis, Technische Universität München

  80. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineerng analysis. Int J Numer Methods Eng 24(2):337–357

    Article  MATH  Google Scholar 

  81. Zienkiewicz OC, Zhu JZ (1992a) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng 33(7):1331–1364

    Article  MATH  Google Scholar 

  82. Zienkiewicz OC, Zhu JZ (1992b) The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int J Numer Methods Eng 33(7):1365–1382

    Article  MATH  Google Scholar 

  83. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier, Oxford

    MATH  Google Scholar 

Download references

Acknowledgements

Haohan Sun gratefully acknowledges support from Tsinghua University Tutor Research Fund that funded his short-term stay at the University of Minnesota. Dominik Schillinger acknowledges support from the National Science Foundation via the NSF CAREER Award No. 1651577, from the German Research Foundation through the DFG Emmy Noether Award SCH 1249/2-1, and from the European Research Council via the ERC Starting Grant “ImageToSim” (Action No. 759001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haohan Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Schillinger, D. & Yuan, S. Implicit a posteriori error estimation in cut finite elements. Comput Mech 65, 967–988 (2020). https://doi.org/10.1007/s00466-019-01803-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01803-2

Keywords

Navigation