Skip to main content
Log in

Modal analysis of rotating pre-twisted viscoelastic sandwich beams

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an analysis of the vibrational behavior of a rotating viscoelastic sandwich pre-twisted beams with a setting angle and with various viscoelastic stiffness laws. The governing equations of motion are derived using the Lagrange formulation and the assumed modes method. The obtained nonlinear eigenvalue problems are solved by using an iterative nonlinear eigensolver leading to complex eigensolutions composed of damped frequencies and loss factors with high accuracy. Further, the effects of the rotating speed, pre-twist angle, thickness ratio of core layer on the dynamic characteristics are investigated with taking into account the dependence of Young modulus with respect to frequency. Different numerical tests on rotating pre-twisted beams are performed for both isotropic and sandwich materials with a constant then a variable core modulus and the obtained results coincide very well with those provided in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang CL, Lin WY, Hsiao KM (2010) Free vibration analysis of rotating Euler beams at high angular velocity. Comput Struct 88:991–1001

    Article  Google Scholar 

  2. Yoo HH, Park JH, Park J (2001) Vibration analysis of rotating pretwisted blades. Comput Struct 79:1811–1819

    Article  Google Scholar 

  3. Zhu TL (2011) The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh–Ritz method. Comput Mech 47:395–408

    Article  MathSciNet  Google Scholar 

  4. Bazoune A (2005) Survey on modal frequencies of centrifugally stiffened beams. Shock Vib Dig 37:449–469

    Article  Google Scholar 

  5. Kim H, Yoo HH, Chung J (2013) Dynamic model for free vibration and response analysis of rotating beams. J Sound Vib 332:5917–5922

    Article  Google Scholar 

  6. Anderson RA (1953) Flexural vibrations in uniform beams according to the Timoshenko theory. J Appl Mech 20:504–510

    MATH  Google Scholar 

  7. Carnegie W (1964) Vibration of pre-twisted cantilever blading allowing for rotary inertia and shear deflection. J Mech Eng Sci 6:105–109

    Article  Google Scholar 

  8. Dawson B, Ghosh NG, Carnegie W (1971) Effect of slenderness ratio on the natural frequencies of pre-twisted cantilever beams of uniform rectangular cross-section. J Mech Eng Sci 13:51–59

    Article  Google Scholar 

  9. Gupta RS, Rao SS (1978) Finite element eigenvalue analysis of tapered and twisted Timoshenko beams. J Sound Vib 56:187–200

    Article  Google Scholar 

  10. Subrahmanyam KB, Kulkarni SV, Rao JS (1981) Coupled bending-bending vibration of pre-twisted cantilever blading allowing for shear deflection and rotary inertia by the Reissner method. Int J Mech Sci 23:517–530

    Article  Google Scholar 

  11. Subrahmanyam KB, Kaza KRV (1986) Vibration and buckling of rotating, pretwisted, preconed beams including coriolis effects. J Vib Acoust Stress Reliab Des 108(2):140–149

    Article  Google Scholar 

  12. Yardimoglu B, Yildirim T (2004) Finite element model for vibration analysis of pre-twisted Timoshenko beam. J Sound Vib 273:741–754

    Article  Google Scholar 

  13. Lin SM, Wang WR, Lee SY (2001) The dynamic analysis of nonuniformly pre-twisted Timoshenko beams with elastic boundary conditions. Int J Mech Sci 43:2385–2405

    Article  Google Scholar 

  14. Banerjee JR (2004) Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam. J Sound Vib 270:379–401

    Article  Google Scholar 

  15. Al-Aini Y, deLaneuville R, Stoner A (1997) High cycle fatigue of turbomachinery components—industry perspective. AIAA Paper No. 97–3365

  16. Norris JM, Knott DS, Jones AM, Mideglow DR, Hall RM (2003) Turbomachine blade. US Patent No. 6,669,447B2

  17. Malmborg EW, Pollack TA (2019) Hollow fan blade constrained layer damper. US Patent No. US2019/0112931A1

  18. Kerwin EM (1959) Damping of flexural waves by a constrained viscoelastic layer. J Acoust Soc Am 31:952–962

    Article  Google Scholar 

  19. Soni ML (1981) Finite element analysis of viscoelastically damped sandwich structures. Shock Vib Bull 55(1):97–109

    Google Scholar 

  20. DiTaranto RA (1965) Theory of vibratory bending for elastic and viscoelastic layered finite length beams. J Appl Mech 87:881–886

    Article  Google Scholar 

  21. Nashif A, Torvik P, Desai J, Hansel J, Henderson J (2008) Increasing gas turbine blade damping through cavities filled with viscoelastic materials. J Propuls Power 24:741–750

    Article  Google Scholar 

  22. Rao DK (1976) Transverse vibrations of pre-twisted sandwich beams. J Sound Vib 44(2):159–168

    Article  Google Scholar 

  23. Lin CY, Chen LW (2003) Dynamic stability of a rotating pre-twisted blades with a constrained damping layer. Compos Struct 61:235–245

    Article  Google Scholar 

  24. Nayak B, Dwivedy SK, Murthy KSRK (2014) Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core. Eur J Mech A/Solid 47:143–155

    Article  Google Scholar 

  25. Navazi HM, Bornassi S, Haddadpour H (2017) Vibration analysis of a rotating magnetorheological tapered sandwich beam. Int J Mech Sci 122:308–317

    Article  Google Scholar 

  26. Cao DX, Liu BY, Yao MH, Zhang W (2017) Free vibration analysis of a pre-twisted sandwich blade with thermal barrier coatings layers. Sci China Technol Sci 11:1747–1761

    Article  Google Scholar 

  27. Rao JS, Gupta K (1987) Free vibrations of rotating small aspect ratio pretwisted blades. Mech Mach Theory 22:159–167

    Article  Google Scholar 

  28. Kpeky F, Boudaoud H, Abed-Mraim F, Daya EM (2015) Modeling of viscoelastic sandwich beams using solid-shell finite elements. Compos Struct 133:105–116

    Article  Google Scholar 

  29. Faccio Jùnior CJ, Cardozo ACP, Monteiro Jùnior V, Gay Neto A (2019) Modeling wind turbine blades by geometrically-exact beam and shell elements: a comparative approach. Eng Struct 180:357–378

    Article  Google Scholar 

  30. Chen X, Chen H, Hu X (1999) Damping prediction of sandwich structures by order-reduction-iteration approach. J Sound Vib 222:803–812

    Article  Google Scholar 

  31. Martinez-Agirre M, Elejabarrieta MJ (2011) Higher order eigensensitivities-based numerical method for the harmonic analysis of viscoelastically damped structures. Int J Numer Methods Eng 222:803–812

    MathSciNet  MATH  Google Scholar 

  32. Moita J, Araujo A, Martins P, Soares CM (2011) A finite element model for the analysis of viscoelastic sandwich structures. Comput Struct 89:1874–1881

    Article  Google Scholar 

  33. Boumediene F, Bekhoucha F, Daya EM (2019) Modal analysis of rotating viscoelastic sandwich beams. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2019.1567887

    Article  Google Scholar 

  34. Bilasse M, Charpentier I, Daya EM, Koutsawa Y (2009) A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method. Comput Methods Appl Mech Eng 198:3999–4004

    Article  Google Scholar 

  35. Daya EM, Potier-Ferry M (2001) A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput Struct 79(5):533–541

    Article  MathSciNet  Google Scholar 

  36. Hamdaoui M, Akoussan K, Daya EM (2016) Comparison of non-linear eigensolvers for modal analysis of frequency dependent laminated viscoelastic sandwich plates. Finite Elem Anal Des 121:75–85

    Article  MathSciNet  Google Scholar 

  37. Bekhoucha F, Rechak S, Duigou L, Cadou JM (2013) Nonlinear forced vibrations of rotating anisotropic beams. Nonlinear Dyn 74(4):1281–1296

    Article  MathSciNet  Google Scholar 

  38. Inman DJ (2014) Engineering vibration, 4th edn. Pearson, London

    Google Scholar 

  39. Rao DK (1978) Frequency and loss factors of sandwich beams under various boundary conditions. J Mech Eng Sci 20:271–282

    Article  Google Scholar 

  40. Wright AD, Smith CE, Thresher RW, Wang JLC (1982) Vibration modes of centrifugally stiffened beams. J Appl Mech 49:197–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhat Bekhoucha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Expressions of energies’ partial derivatives

Equations of motion Eqs. (4750) are obtained by means of the Lagrange’s formulation Eq. (46). All necessary partial derivatives of U and T with respect to the generalized coordinates \(q_{ui}\), \(q_{vi}\), \(q_{wi}\) and \(q_{\beta i}\) are expressed hereafter.

1.1 Potential energy’s partial derivatives, \(\Big (\frac{\partial U}{\partial q_{i}}\Big )\)

$$\begin{aligned}&\displaystyle \frac{\partial U}{\partial q_{ui}}= \int _{0}^L (2E_fA_f + E_c(\omega )A_c) \sum _{j=1}^{m} \varPhi '_{1i} \varPhi '_{uj} q_{uj} dx \end{aligned}$$
(A.1)
$$\begin{aligned}&\displaystyle \frac{\partial U}{\partial q_{vi}}= \int _{0}^L\Big [ \left( 2E_fI_{fzz}+E_c(\omega )I_{czz}+E_fA_f \frac{d^2\sin ^2\theta }{2}\right) \nonumber \\&\quad \sum _{j=1}^{m} \varPhi ''_{vi} \varPhi ''_{vj} q_{2j}\nonumber \\&\qquad +\bigg (2E_fI_{fyz}-E_fA_f\frac{dh_f\sin 2\theta }{4} \bigg )\sum _{j=1}^{m} \varPhi ''_{vi} \varPhi ''_{wj} q_{3j}\nonumber \\&\qquad \bigg ( E_c(\omega )I_{cyz}-E_fA_f\frac{dh_c\sin 2\theta }{4}\bigg )\sum _{j=1}^{m} \varPhi ''_{vi} \varPhi '_{\beta j} q_{\beta j}\nonumber \\&\qquad + N_s \sum _{j=1}^{m} \varPhi '_{vi} \varPhi '_{vj} q_{vj} \bigg ]dx \end{aligned}$$
(A.2)
$$\begin{aligned}&\displaystyle \frac{\partial U}{\partial q_{wi}}= \int _{0}^L\bigg [ \bigg (2E_fI_{fyz}-E_fA_f \frac{dh_f\sin 2\theta }{4}\bigg )\nonumber \\&\quad \sum _{j=1}^{m} \varPhi ''_{wi} \varPhi ''_{vj} q_{vj} +\bigg (2E_fI_{fyy}\nonumber \\&\qquad +E_fA_f\frac{h_f^2\cos ^2\theta }{2} \bigg )\sum _{j=1}^{m} \varPhi ''_{wi} \varPhi ''_{wj} q_{wj}\nonumber \\&\qquad +E_fA_f\frac{h_fh_c\cos ^2\theta }{2}\sum _{j=1}^{m} \varPhi ''_{wi} \varPhi '_{\beta j} q_{\beta j}\nonumber \\&\qquad + \bigg (G_c(\omega )A_c + N_s\bigg ) \sum _{j=1}^{m} \varPhi '_{wi} \varPhi '_{wj} q_{wj} - G_c(\omega )A_c\nonumber \\&\quad \sum _{j=1}^{m} \varPhi '_{wi} \varPhi _{\beta j} q_{\beta j} \bigg ]dx \end{aligned}$$
(A.3)
$$\begin{aligned}&\displaystyle \frac{\partial U}{\partial q_{\beta i}}= \int _{0}^L\bigg [ \bigg (E_c(\omega )I_{cyz}-E_fA_f \frac{dh_c\sin 2\theta }{4}\bigg )\nonumber \\&\quad \sum _{j=1}^{m} \varPhi '_{\beta i} \varPhi ''_{vj} q_{vj} +E_fA_f\frac{h_fh_c\cos ^2\theta }{2}\sum _{j=1}^{m} \varPhi '_{\beta i} \varPhi ''_{wj} q_{wj}\nonumber \\&\qquad +\bigg (E_c(\omega )I_{cyy}+E_fA_f\frac{h_c^2\cos ^2\theta }{2}\bigg )\sum _{j=1}^{m} \varPhi '_{\beta i} \varPhi '_{\beta j} q_{\beta j}\nonumber \\&\qquad - G_c(\omega )A_c \sum _{j=1}^{m} \varPhi _{\beta i} \varPhi '_{wj} q_{wj} \nonumber \\&\qquad + G_c(\omega )A_c \sum _{j=1}^{m} \varPhi _{\beta i} \varPhi _{\beta j} q_{\beta j} \bigg ]dx \end{aligned}$$
(A.4)

1.2 Kinetic energy’s partial derivatives, \(\bigg (\frac{\partial T}{\partial q_{i}}\) and \(\frac{\mathrm {d}}{\mathrm {d}t}\frac{\partial T}{\partial \dot{q}_{i}}\bigg )\)

$$\begin{aligned}&\displaystyle \frac{\partial T}{\partial q_{uj}}= \rho A \varOmega ^2 \int _{0}^L\nonumber \\&\quad \bigg [ \sum _{j=1}^{m} \varPhi _{ui} \varPhi _{uj} q_{uj} + \sum _{j=1}^{m} (r_h+x)\varPhi _{uj}\bigg ]dx \end{aligned}$$
(A.5)
$$\begin{aligned}&\displaystyle \frac{\partial T}{\partial q_{vi}}= \int _{0}^L\bigg [ \rho A \varOmega ^2\sum _{j=1}^{m} \varPhi _{vi} \varPhi _{vj} q_{vj} + \rho _fA_f \varOmega ^2\nonumber \\&\quad \bigg (\frac{d^2\sin ^2\theta }{2}\sum _{j=1}^{m} \varPhi '_{vi} \varPhi '_{vj} q_{vj}\nonumber \\&\quad - \frac{dh_f\sin 2\theta }{4} \sum _{j=1}^{m} \varPhi '_{vi} \varPhi '_{wj} q_{wj}- \frac{dh_c\sin 2\theta }{4}\nonumber \\&\quad \sum _{j=1}^{m} \varPhi '_{vi} \varPhi _{\beta j} q_{\beta j}\bigg ) \bigg ]dx \end{aligned}$$
(A.6)
$$\begin{aligned}&\displaystyle \frac{\partial T}{\partial q_{wi}}= \rho _fA_f \varOmega ^2\int _{0}^L\bigg [ -\frac{dh_f\sin 2\theta }{4}\nonumber \\&\quad \sum _{j=1}^{m} \varPhi '_{wi} \varPhi '_{vj} q_{vj} + \frac{h_f^2\cos ^2\theta }{2} \sum _{j=1}^{m} \varPhi '_{wi} \varPhi '_{wj} q_{wj}\nonumber \\&\quad + \frac{h_fh_c\cos ^2\theta }{2} \sum _{j=1}^{m} \varPhi '_{wi} \varPhi _{\beta j} q_{\beta j} \bigg ]dx \end{aligned}$$
(A.7)
$$\begin{aligned}&\displaystyle \frac{\partial T}{\partial q_{\beta i}}= \rho _fA_f \varOmega ^2\int _{0}^L\bigg [ -\frac{dh_c\sin 2\theta }{4}\nonumber \\&\quad \sum _{j=1}^{m} \varPhi _{\beta i} \varPhi '_{vj} q_{vj} + \frac{h_fh_c\cos ^2\theta }{2} \sum _{j=1}^{m} \varPhi _{\beta i} \varPhi '_{wj} q_{wj}\nonumber \\&\quad + \frac{h_c^2\cos ^2\theta }{2} \sum _{j=1}^{m} \varPhi _{\beta i} \varPhi _{\beta j} q_{\beta j} \bigg ]dx \end{aligned}$$
(A.8)

To derive the equations of motion, the derivatives with respect to time t of the partial derivatives of T with respect to the generalized velocities, i.e. \(\frac{\mathrm {d}}{\mathrm {d}t}\bigg (\frac{\partial T}{\partial \dot{q}_{i}}\bigg )\) are needed. One obtains

$$\begin{aligned}&\displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\bigg (\frac{\partial T}{\partial \dot{q}_{ui}}\bigg )= \rho A \int _{0}^L \sum _{j=1}^{m} \varPhi _{ui} \varPhi _{uj} \ddot{q}_{1j} dx \end{aligned}$$
(A.9)
$$\begin{aligned}&\displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\bigg (\frac{\partial T}{\partial \dot{q}_{vi}}\bigg )= \int _{0}^L \bigg [\rho A \sum _{j=1}^{m} \varPhi _{vi} \varPhi _{vj} \ddot{q}_{vj} + \rho _fA_f\nonumber \\&\qquad \bigg (\frac{d^2\sin ^2\theta }{2}\sum _{j=1}^{m} \varPhi '_{vi} \varPhi '_{vj}\ddot{q}_{vj} \nonumber \\&\qquad - \frac{dh_f\sin 2\theta }{4} \sum _{j=1}^{m} \varPhi '_{vi} \varPhi '_{wj}\ddot{q}_{wj}\nonumber \\&\qquad - \frac{dh_c\sin 2\theta }{4} \sum _{j=1}^{m} \varPhi '_{vi} \varPhi _{\beta j}\ddot{q}_{\beta j}\bigg ) \bigg ]dx \end{aligned}$$
(A.10)
$$\begin{aligned}&\displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\bigg (\frac{\partial T}{\partial \dot{q}_{wi}}\bigg )= \int _{0}^L \bigg [\rho A \sum _{j=1}^{m} \varPhi _{wi} \varPhi _{wj} \ddot{q}_{wj}\nonumber \\&\qquad + \rho _fA_f \bigg (\frac{h_f^2\cos ^2\theta }{2}\sum _{j=1}^{m} \varPhi '_{wi} \varPhi '_{wj}\ddot{q}_{wj} \nonumber \\&\qquad - \frac{dh_f\sin 2\theta }{4} \sum _{j=1}^{m} \varPhi '_{wi} \varPhi '_{vj}\ddot{q}_{vj}+ \frac{h_fh_c\cos ^2\theta }{2}\nonumber \\&\qquad \sum _{j=1}^{m} \varPhi '_{wi} \varPhi _{\beta j}\ddot{q}_{\beta j}\bigg ) \bigg ]dx \end{aligned}$$
(A.11)
$$\begin{aligned}&\displaystyle \frac{\mathrm {d}}{\mathrm {d}t}\bigg (\frac{\partial T}{\partial \dot{q}_{\beta i}}\bigg )= \rho _fA_f\int _{0}^L \bigg [ -\frac{dh_c\sin 2\theta }{4}\sum _{j=1}^{m} \varPhi _{\beta i} \varPhi '_{vj}\ddot{q}_{vj}\nonumber \\&\qquad + \frac{h_ch_f\cos ^2\theta }{2} \sum _{j=1}^{m} \varPhi _{\beta i} \varPhi '_{wj}\ddot{q}_{wj}\nonumber \\&\qquad + \frac{h_c^2\cos ^2\theta }{2} \sum _{j=1}^{m} \varPhi _{\beta i} \varPhi _{\beta j}\ddot{q}_{\beta j} \bigg ]dx \end{aligned}$$
(A.12)

Expressions of matrices: \(M_{ij}^{\alpha \beta }\), \(K_{ij}^{\alpha \beta }\) and \(P_{ij}^{\alpha }\)

$$\begin{aligned} M_{ij}^{11}= & {} \displaystyle \int _{0}^L\rho A \varPhi _{ui} \varPhi _{uj} dx,\\ M_{ij}^{22}= & {} \displaystyle \int _{0}^L\rho A \varPhi _{vi} \varPhi _{vj} dx \\ M_{ij}^{33}= & {} \displaystyle \int _{0}^L\rho A \varPhi _{wi} \varPhi _{wj} dx,\\ K_{ij}^{11}= & {} \displaystyle \int _{0}^L 2E_fA_f \varPhi '_{ui} \varPhi '_{uj} dx \\ K_{ij}^{t1}= & {} \displaystyle \int _{0}^L\rho _fA_f\frac{d^2}{2}\sin ^2\theta \varPhi '_{vi} \varPhi '_{vj} dx,\\ K_{ij}^{t2}= & {} \displaystyle \int _{0}^L\rho _fA_f\frac{dh_f}{4}\sin 2\theta \varPhi '_{vi} \varPhi '_{wj} dx \\ K_{ij}^{t3}= & {} \displaystyle \int _{0}^L\rho _fA_f\frac{dh_c}{4}\sin 2\theta \varPhi '_{vi} \varPhi '_{wj} dx\qquad \\ K_{ij}^{t4}= & {} \displaystyle \int _{0}^L\rho _fA_f\frac{h_ch_f}{2}\cos ^2\theta \varPhi '_{wi} \varPhi '_{wj} dx \nonumber \\ K_{ij}^{t5}= & {} \displaystyle \int _{0}^L\rho _fA_f\frac{h_c^2}{2}\cos ^2\theta \varPhi '_{wi} \varPhi '_{wj} dx,\\ K_{ij}^{t6}= & {} \displaystyle \int _{0}^L\rho _fA_f\frac{h_f^2}{2}\cos ^2\theta \varPhi '_{wi} \varPhi '_{wj} dx \\ K_{ij}^{S1}= & {} \displaystyle \int _{0}^LE_fA_f\frac{d^2}{2}\sin ^2\theta \varPhi ''_{vi} \varPhi ''_{vj} dx,\\ K_{ij}^{S2}= & {} \displaystyle \int _{0}^LE_fA_f\frac{dh_f}{4}\sin 2\theta \varPhi ''_{vi} \varPhi ''_{wj} dx \\ K_{ij}^{S3}= & {} \displaystyle \int _{0}^LE_fA_f\frac{dh_c}{4}\sin 2\theta \varPhi ''_{vi} \varPhi ''_{wj} dx,\\ K_{ij}^{S4}= & {} \displaystyle \int _{0}^LE_fA_f\frac{h_f^2}{2}\cos ^2\theta \varPhi ''_{wi} \varPhi ''_{wj} dx \end{aligned}$$
$$\begin{aligned} K_{ij}^{S5}= & {} \displaystyle \int _{0}^LE_fA_f\frac{h_fh_c}{2}\cos ^2\theta \varPhi ''_{wi} \varPhi ''_{wj} dx,\\ K_{ij}^{S6}= & {} \displaystyle \int _{0}^LE_fA_f\frac{h_c^2}{2}\cos ^2\theta \varPhi ''_{wi} \varPhi ''_{wj} dx \\ K_{ij}^{I2}= & {} \displaystyle \int _{0}^L2E_fI_{fyy}\varPhi ''_{wi} \varPhi ''_{wj} dx,\\ K_{ij}^{I3}= & {} \displaystyle \int _{0}^L2E_fI_{fzz}\varPhi ''_{vi} \varPhi ''_{vj} dx \\ K_{ij}^{R2}= & {} \displaystyle \int _{0}^L\rho A\bigg [\frac{1}{2}(L^2-x^2) + r_h(L-x)\bigg ]\varPhi '_{vi} \varPhi '_{vj} dx,\\ K_{ij}^{I4}= & {} \displaystyle \int _{0}^L2E_fI_{fyz}\varPhi ''_{vi} \varPhi ''_{wj} dx \\ K_{ij}^{R3}= & {} \displaystyle \int _{0}^L\rho A\bigg [\frac{1}{2}(L^2-x^2) + r_h(L-x)\bigg ]\varPhi '_{wi} \varPhi '_{wj} dx,\\ P_{1j}^1= & {} \displaystyle \int _{0}^L\bigg (r_h+x \bigg )\varPhi _{uj} dx \\ K_{ij}^{V1}= & {} \displaystyle \int _{0}^L A_c \varPhi '_{ui} \varPhi '_{uj} dx,\\ K_{ij}^{V2}= & {} \displaystyle \int _{0}^LI_{cyy}\varPhi ''_{wi} \varPhi ''_{wj} dx \\ K_{ij}^{V3}= & {} \displaystyle \int _{0}^LI_{czz}\varPhi ''_{vi} \varPhi ''_{vj} dx,\\ K_{ij}^{V4}= & {} \displaystyle \int _{0}^LI_{cyz}\varPhi ''_{vi} \varPhi ''_{wj} dx \\ K_{ij}^{V5}= & {} \displaystyle \int _{0}^L\frac{A_c}{2(1+\nu _c)}\varPhi '_{vi} \varPhi '_{vj} dx,\\ K_{ij}^{V6}= & {} \displaystyle \int _{0}^L\frac{A_c}{2(1+\nu _c)}\varPhi '_{vi} \varPhi '_{wj} dx \\ K_{ij}^{V7}= & {} \displaystyle \int _{0}^L\frac{A_c}{2(1+\nu _c)}\varPhi '_{wi} \varPhi '_{wj} dx \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekhoucha, F., Boumediene, F. Modal analysis of rotating pre-twisted viscoelastic sandwich beams. Comput Mech 65, 1019–1037 (2020). https://doi.org/10.1007/s00466-019-01806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01806-z

Keywords

Navigation