Skip to main content
Log in

A nonlinear finite element connector for the simulation of bolted assemblies

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Fine scale computations of bolted assemblies are generally too costly and hardly tractable within an optimization process. Thus, finite elements (FE) connectors or user-elements are commonly used in FE commercial codes by engineers as substitutes for bolts. In this paper, a non-linear FE connector with its identification methodology is proposed to model the behaviour of a single-bolt joint. The connector model is based on design parameters (bolt prestress, friction coefficient, bolt characteristics...). The axial behaviour of the connector reflects the preload effect and the axial bolt stiffness. The tangential connector behaviour accounts for frictional phenomena that occur in the bolt’s vicinity due to preload thanks to an elasto-plastic analogy for friction. Tangential and normal behaviours identification is performed on a generic elementary single bolt joint. The connector has been implemented in ABAQUS through a user-element subroutine. Comparisons of the quasistatic responses between full fine scale 3D computations and 3D simulations with connectors on various bolted assemblies are proposed. Results are in good agreement and a significant gain in terms of CPU time is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Izumi S, Yokoyama T, Iwasaki A, Sakai S (2005) Three-dimensional finite element analysis of tightening and loosening mechanism of threaded fastener. Eng Fail Anal 12(4):604–615. https://doi.org/10.1016/j.engfailanal.2004.09.009

    Article  Google Scholar 

  2. Alkatan F, Stephan P, Daidié D, Guillot J (2007) Equivalent axial stiffness of various components in bolted joints subjected to axial loading. Finite Elem Anal Des 43(8):589–598. https://doi.org/10.1016/j.finel.2006.12.013

    Article  Google Scholar 

  3. Lehnhoff TF, Bunyard BA (2001) Effects of bolt threads on the stiffness of bolted joints. J Pressure Vessel Technol 123(2):161–165. https://doi.org/10.1115/1.1319504

    Article  Google Scholar 

  4. Lehnhoff TF, Wistehuff WE (1996) Nonlinear effects on the stiffness of bolted joints. J Pressure Vessel Technol 118(1):48–53. https://doi.org/10.1115/1.2842162

    Article  Google Scholar 

  5. McCarthy CT, McCarthy MA, Stanley WF, Lawlor VF (2005) Experiences with modeling friction in composite bolted joints. J Compos Mater 39(21):1881–1908. https://doi.org/10.1177/0021998305051805

    Article  Google Scholar 

  6. Riccio A, Scaramuzzino F (2002) Influence of damage onset and propagation on the tensile structural behavior of protruding composite joints. In: 4th GRACM congress on computational mechanics, Patras, 2002. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.570.458

  7. Egan B, McCarthy MA, Frizzell RM, Gray PJ, McCarthy CT (2014) Modelling bearing failure in countersunk composite joints under quasi-static loading using 3D explicit finite element analysis. Compos Struct 108(1):963–977. https://doi.org/10.1016/j.compstruct.2013.10.033

    Article  Google Scholar 

  8. Adam L, Bouvet C, Castanié B, Daidié A, Bonhomme E (2012) Discrete ply model of circular pull-through test of fasteners in laminates. Compos Struct 94(10):3082–3091. https://doi.org/10.1016/j.compstruct.2012.05.008

    Article  Google Scholar 

  9. McCarthy CT, McCarthy MA (2005) Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part II-effects of bolt-hole clearance. Compos Struct 71(2):159–175. https://doi.org/10.1016/j.compstruct.2004.09.023

    Article  Google Scholar 

  10. Chakhari J, Daidié A, Chaib A, Guillot J (2008) Numerical model for two-bolted joints subjected to compressive loading. Finite Elem Anal Des 44(4):162–173. https://doi.org/10.1016/j.finel.2007.11.010

    Article  Google Scholar 

  11. Daidié A, Chakhari J, Zghal A (2007) Numerical model for bolted T-stubs with two bolt rows. Struct Eng Mech 26(3):343–361. https://doi.org/10.12989/sem.2007.26.3.343

    Article  Google Scholar 

  12. Schijve J, Campoli G, Monaco A (2009) Fatigue of structures and secondary bending in structural elements. Int J Fatigue 31(7):1111–1123. https://doi.org/10.1016/j.ijfatigue.2009.01.009

    Article  Google Scholar 

  13. Ekh J, Schön J, Melin LG (2005) Secondary bending in multi fastener, composite-to-aluminium single shear lap joints. Compos B Eng 36(3):195–208. https://doi.org/10.1016/j.compositesb.2004.09.001

    Article  Google Scholar 

  14. Roulet V, Boucard PA, Champaney L (2013) An efficient computational strategy for composite laminates assemblies including variability. Int J Solids Struct 50(18):2749–2757. https://doi.org/10.1016/j.ijsolstr.2013.04.028

    Article  Google Scholar 

  15. Roulet V, Champaney L, Boucard PA (2011) A parallel strategy for the multiparametric analysis of structures with large contact and friction surfaces. Adv Eng Softw 42(6):347–358. https://doi.org/10.1016/j.advengsoft.2011.02.013

    Article  MATH  Google Scholar 

  16. McCarthy CT, Gray PJ (2011) An analytical model for the prediction of load distribution in highly torqued multi-bolt composite joints. Compos Struct 93(2):287–298. https://doi.org/10.1016/j.compstruct.2010.09.017

    Article  Google Scholar 

  17. Andriamampianina J, Alkatan F, Stéphan P, Guillot J (2012) Determining load distribution between the different rows of fasteners of a hybrid load transfer bolted joint assembly. Aerosp Sci Technol 23(1):287–298. https://doi.org/10.1016/j.ast.2011.08.008

    Article  Google Scholar 

  18. Omran O, Nguyen V, Jaffal H, Coorevits P (2018) Development of a connector element for multi-material bolted-joint under tensile loading. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1452314

  19. Bortman J, Szabó BA (1992) Nonlinear models for fastened structural connections. Comput Struct 43(5):909–923. https://doi.org/10.1016/0045-7949(92)90305-J

    Article  Google Scholar 

  20. McCarthy MA, McCarthy CT, Padhi GS (2006) A simple method for determining the effects of bolt-hole clearance on load distribution in single-column multi-bolt composite joints. Compos Struct 73(1):78–87. https://doi.org/10.1016/j.compstruct.2005.01.028

    Article  Google Scholar 

  21. Huth H (1986) Influence of fastener flexibility on the prediction of load transfer and fatigue life for multiple-row joints. Fatigue Mech Fasten Compos Metal Joints https://doi.org/10.1520/STP29062S

  22. Tate MB, Rosenfeld SJ (1946) Preliminary investigation of the loads carried by individual bolts in bolted joints. NACA Technical Note NACA-TN-1051, National Advisory Committee for Aeronautics. Langley Aeronautical Lab.; Langley Field, VA, United States

  23. Swift T (1971) Development of the fail-safe design features of the DC-10. In: Rosenfeld M (ed) STP486-EB damage tolerance in aircraft structures. ASTM International, West Conshohocken, PA, pp 164–214. https://doi.org/10.1520/STP26678S

    Chapter  Google Scholar 

  24. Nelson WD, Bunin BL, Hart-Smith LJ (1983) Critical joints in large composite aircraft structure, Tech. Rep. NASA Contractor Report 3710 (08 1983)

  25. Cope D, Lacy T (2000) Stress intensity determination in lap joints with mechanical fasteners. In: 41st Structures, structural dynamics, and materials conference and exhibit, 03 April 2000 - 06 April 2000, Atlanta,GA,U.S.A. https://doi.org/10.2514/6.2000-1368

  26. Ekh J, Schön J (2008) Finite element modeling and optimization of load transfer in multi-fastener joints using structural elements. Compos Struct 82(2):245–256. https://doi.org/10.1016/j.compstruct.2007.01.005

    Article  Google Scholar 

  27. Gray PJ, McCarthy CT (2010) A global bolted joint model for finite element analysis of load distributions in multi-bolt composite joints. Compos B Eng 41(4):317–325. https://doi.org/10.1016/j.compositesb.2010.03.001

    Article  Google Scholar 

  28. Askri R, Bois C, Wargnier H, Lecomte J (2016) A reduced fastener model using multi-connected rigid surfaces for the prediction of both local stress field and load distribution between fasteners. Finite Elem Anal Des 110:32–42. https://doi.org/10.1016/j.finel.2015.11.004

    Article  Google Scholar 

  29. Soulé De Lafont M-F, Guidault P-A, Boucard P-A (2014) A finite element connector based on design parameters for the simulation of bolted assemblies. In: The Twelfth international conference on computational structures technology. Napoli, Italy. https://hal.archives-ouvertes.fr/hal-01579096

  30. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin. https://doi.org/10.1007/978-3-540-32609-0

    Book  MATH  Google Scholar 

  31. Guidault P-A, Soulé De Lafont M-F, Boucard P-A (2017) Modelling and identification of a nonlinear finite element connector for the simulation of bolted assemblies. In: 14th International conference on computational plasticity. Barcelone, Spain. https://hal.archives-ouvertes.fr/hal-01683720

  32. Guidault P-A, Soulé De Lafont M-F, Boucard P-A (2014) Identification of a finite element connector for the simulation of bolted joints. In: 11th World congress on computational mechanics. Barcelona, Spain https://hal.archives-ouvertes.fr/hal-01694133

  33. Verwaerde R, Guidault P-A, Boucard P-A (2018) A nonlinear connector element with physical properties for modelling bolted connections. In: The thirteenth international conference on computational structures technology. Sitges, Barcelona, Spain. https://hal.archives-ouvertes.fr/hal-01874772

  34. Dassault Systèmes Simulia Corporation, Abaqus Analysis user’s Guide, Section 35.3.2. Coupling Constraints (2016)

  35. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139167970

    Book  MATH  Google Scholar 

  36. Simo J, Taylor R (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48(1):101–118. https://doi.org/10.1016/0045-7825(85)90070-2

    Article  MATH  Google Scholar 

  37. VDI (2003) 2230 Blatt 1 : Systematische Berechnung hochbeanspruchter Schraubenverbindungen Zylindrische Einschraubenverbindungen, Berlin Düsseldorf

Download references

Acknowledgements

This work was performed using HPC resources from the “Mésocentre” computing center of CentraleSupélec and École Normale Supérieure Paris-Saclay supported by CNRS and Région Île-de-France (http://mesocentre.centralesupelec.fr/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Verwaerde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Radial return mapping algorithm

  1. 1.

    Increment of tangential gap within the time step \(\varDelta t_{n+1}\)

    As specified in (5), the expression of the tangential displacement jump \(\varvec{g}_{T}\) is given by

    $$\begin{aligned} \varDelta g_{T,(n+1)} = (\varvec{I}_3- \varvec{n}_{(0)}\otimes \varvec{n}_{(0)})\left( \varDelta u_{2,(n+1)}-\varDelta u_{1,(n+1)}\right) \end{aligned}$$
    (23)

    in the case of small pertubations.

  2. 2.

    Computation of the elastic trial state from (7) and evaluation of the slip criterion (8) at time \(t_{n+1}\). The trial state consists in assuming that the considered increment is purely elastic, and then correcting it according to the value of the obtained threshold function. Since the total slip \(\varvec{g}_{T,(n+1)} = \varvec{g}_{T,(n)} + \varDelta \varvec{g}_{T,(n+1)}\) is decomposed into an elastic and a plastic part, one has:

    $$\begin{aligned} \begin{array}{rcl} \varvec{t}_{T,(n+1)}^{tr}&{} = &{} c_{T}\left( \varvec{g}_{T,(n+1)}-\varvec{g}^s_{T,(n)}\right) \\ &{}=&{} \varvec{t}_{T,(n)} + c_T\,\varDelta \varvec{g}_{T,(n+1)}\\ \end{array} \end{aligned}$$
    (24)

    Here the vector \(\varvec{t}_{T,(n)} = c_T\left( \varvec{g}_{T,(n)}-\varvec{g}^s_{T,(n)}\right) \) is the tangential force at time \(t_n\). A value of the slip criterion which fulfills \(f_{s,(n+1)}^{tr}\leqslant 0\) indicates stick. For \(f_{s,(n+1)}^{tr}>0\) sliding occurs in the tangential direction, and a return mapping of the trial tractions to the slip surface has to be performed. For Coulomb’s model, one simply has:

    $$\begin{aligned} f_{s,(n+1)}^{tr} = \Vert \varvec{t}^{tr}_{T,(n+1)} \Vert - \mu \,p_{N,(n+1)} \end{aligned}$$
    (25)

    where \(p_{N,(n+1)} = c_N \vert g_{N,(n+1)}\vert \) (since \( g_{N,(n+1)}<0\) when contact occurs) and where \(c_N\) is the normal connector stiffness.

  3. 3.

    Return mapping procedure is derived from the time integration algorithm. In case the implicit Euler scheme is applied to approximate the evolution equation (9), one obtains:

    $$\begin{aligned} \varvec{g}^s_{T,(n+1)} = \varvec{g}^s_{T,(n)} + \lambda \,\varvec{n}_{T,(n+1)} \quad \end{aligned}$$
    (26)

    with

    $$\begin{aligned} \varvec{n}_{T,(n+1)} =\dfrac{\varvec{t}_{T,(n+1)} }{\Vert \varvec{t}_{T,(n+1)} \Vert } \end{aligned}$$
    (27)

    With the standard arguments regarding the projection schemes [36], one obtains:

    $$\begin{aligned} \left\{ \begin{array}{rcl} \varvec{t}_{T,(n+1)} &{} = &{} \varvec{t}^{tr}_{T,(n+1)}-\lambda \,c_T\,\varvec{n}_{T,(n+1)} \\ \varvec{n}_{T,(n+1)} &{} = &{} \varvec{n}_{T,(n+1)}^{tr} \quad \end{array}\right. \end{aligned}$$
    (28)

    with

    $$\begin{aligned} \varvec{n}_{T,(n+1)}^{tr} =\dfrac{\varvec{t}_{T,(n+1)}^{tr} }{\Vert \varvec{t}_{T,(n+1)}^{tr} \Vert } \end{aligned}$$
    (29)

    The multiplication of (28) by \(\varvec{n}_{T,(n+1)}\) yields the condition from which \(\lambda \) may be computed:

    $$\begin{aligned} \kappa (\lambda ) = \Vert \varvec{t}^{tr}_{T,(n+1)} \Vert - \mu p_{N,(n+1)} - c_T\,\lambda = 0 \end{aligned}$$
    (30)

    since \(\Vert \varvec{t}_{T,(n+1)} \Vert - \mu p_{N,(n+1)} = 0\) on the yield surface. Thus, one gets:

    $$\begin{aligned} \lambda = \dfrac{1}{c_T}\left( \Vert \varvec{t}^{tr}_{T,(n+1)} \Vert - \mu \,p_{N,(n+1)} \right) \end{aligned}$$
    (31)

    Once \(\lambda \) is known, one obtains the explicit results for Coulomb’s model:

    $$\begin{aligned} \begin{array}{rcl} \varvec{t}_{T,(n+1)} &{} = &{} \mu \,p_{N,(n+1)}\, \varvec{n}_{T,(n+1)}^{tr}\\ \varvec{g}^s_{T,(n+1)} &{} =&{} \varvec{g}^s_{T,(n)} + \lambda \ \varvec{n}_{T,(n+1)}^{tr} \end{array} \end{aligned}$$
    (32)

    This update completes the local integration algorithm for the frictional interface law.

Appendix B: Elasto-plastic tangent modulus

Let us consider the yield surface described in (25):

$$\begin{aligned} f_{s}(\varvec{t}_{T}, p_N) = \Vert \varvec{t}_{T} \Vert - \mu p_{N} \end{aligned}$$
(33)

Thus:

$$\begin{aligned} \begin{array}{rcl} \dot{f}_{s}(\varvec{t}_{T}, p_N) &{}=&{} \dfrac{\partial f_s}{\partial \varvec{t}_T}\dot{\varvec{t}}_T + \dfrac{\partial f_s}{\partial p_N}\dot{p}_N\\ &{}=&{} \dfrac{\partial f_s}{\partial \varvec{t}_T} \, c_T\left( \dot{\varvec{g}}_{T}-\dot{\varvec{g}}^s_{T}\right) + \dfrac{\partial f_s}{\partial p_N}\dot{p}_N\\ &{}=&{} \dfrac{\partial f_s}{\partial \varvec{t}_T} \, c_T\left( \dot{\varvec{g}}_{T}-\lambda \dfrac{\partial f_s(\varvec{t}_T)}{\partial \varvec{t}_T}\right) + \dfrac{\partial f_s}{\partial p_N}\dot{p}_N \end{array} \end{aligned}$$
(34)

The consistency condition (\(\lambda \dot{f}_s(\varvec{t}_{T}, p_N) = 0\) if \(f_s(\varvec{t}_T) = 0\)) enables one to determine \(\lambda \):

$$\begin{aligned} \lambda = \dfrac{c_T\dfrac{\partial f_s}{\partial \varvec{t}_T}\dot{\varvec{g}}_{T}+\dfrac{\partial f_s}{\partial p_N}\dot{p}_N }{c_T\dfrac{\partial f_s}{\partial \varvec{t}_T}\dfrac{\partial f_s}{\partial \varvec{t}_T}} \end{aligned}$$
(35)

Since \( \dot{\varvec{g}}^s_T=\dot{\gamma }\,\dfrac{\partial f_s(\varvec{t}_T)}{\partial \varvec{t}_T} = \dot{\gamma } \,\varvec{n}_T=\lambda \,\varvec{n}_T\), one deduces that:

$$\begin{aligned} \lambda = \dfrac{c_T\,\varvec{n}_T^T\,\dot{\varvec{g}}_{T}+\dfrac{\partial f_s}{\partial p_N}\dot{p}_N }{c_T\,\varvec{n}_T^T\varvec{n}_T} = \dfrac{c_T\,\varvec{n}_T^T\,\dot{\varvec{g}}_{T}+\dfrac{\partial f_s}{\partial p_N}\dot{p}_N }{c_T} \end{aligned}$$
(36)

For the Coulomb’s friction model, one obtains:

$$\begin{aligned} \lambda = \dfrac{c_T\,\varvec{n}_T^T\,\dot{\varvec{g}}_{T}-\mu \dot{p}_N }{c_T} \end{aligned}$$
(37)

This provides the expression for \(\dot{\varvec{t}}_{T}\) as a function of \(\dot{\varvec{g}}_T\) and \(\dot{g}_N\):

$$\begin{aligned} \begin{array}{rcl} \dot{\varvec{t}}_{T} &{}=&{} c_T\left( \dot{\varvec{g}}_{T}-\dot{\varvec{g}}^s_{T}\right) \\ &{} = &{} c_T\, \dot{\varvec{g}}_{T}-c_T\,\lambda \,\varvec{n}_T \\ &{}=&{} c_T\, \dot{\varvec{g}}_{T}-\dfrac{c_T\,\varvec{n}_T\left( c_T\,\varvec{n}_T^T\,\dot{\varvec{g}}_{T}\right) -\mu \,c_T \,\dot{p}_N\,\varvec{n}_T}{c_T}\\ &{}=&{} c_T\left( \mathbf {I_3} - \varvec{n}_T\otimes \varvec{n}_T\right) \dot{\varvec{g}}_{T} + \mu \, c_N\,\mathrm {sign}\left( g_{N}\right) \dot{g}_N\,\varvec{n}_T \end{array} \end{aligned}$$
(38)

where \( \varvec{n}_T =\dfrac{\varvec{t}_T}{\Vert \varvec{t}_T\Vert } \). Note that \(\text {sign}(g_N)=-1\).

Note that the frictional term (second term in right-hand side) makes of the matrix which links \(\dot{\varvec{t}}_{T}\) to the normal gap increment \(\dot{g}_N\), non-symmetric. This is because the Coulomb’s law of friction can be viewed as a non-associative constitutive model.

Tangential slip increment and gap increment may be written in matrix form. One can express the variation \(\delta g_{N}\,\varvec{n}_T\) and \(\delta \varvec{g}_{T}\) in terms of connector nodes displacement vector variation \(\delta \varvec{g}\) as expressed in (5) as:

$$\begin{aligned} \begin{array}{rcl} \delta g_{N}\varvec{n}_T&{}=&{}\left( \left( \delta \varvec{x}_2-\delta \varvec{x}_1\right) \cdot \varvec{n}\right) \varvec{n}_T\\ &{}=&{} \begin{pmatrix} -\varvec{n}_T\otimes \varvec{n}\ \ &{} \varvec{n}_T\otimes \varvec{n}\end{pmatrix} \begin{pmatrix} \delta \varvec{x}_1\\ \delta \varvec{x}_2\end{pmatrix}\\ &{}=&{} \begin{pmatrix} -\varvec{n}_T\otimes \varvec{n}\ \ &{} \varvec{0}_{3\times 3}\ \ &{} \varvec{n}_T\otimes \varvec{n}\ \ &{} \varvec{0}_{3\times 3} \end{pmatrix} \delta \varvec{g}\\ &{}=&{}\varvec{N}_T \,\delta \varvec{g}\end{array} \end{aligned}$$
(39)

where \(\varvec{0}_{n\times m}\) represents a n by m null matrix. With the definition of tangential gap given in (5), one gets:

$$\begin{aligned} \begin{array}{rcl} \delta \varvec{g}_{T}&{}=&{} (\mathbf {I_3} - \varvec{n}\otimes \varvec{n})\left( \delta \varvec{x}_2-\delta \varvec{x}_1\right) \\ &{}=&{} \begin{pmatrix} -\left( \mathbf {I_3} - \varvec{n}\otimes \varvec{n}\right) \ \ &{} \mathbf {I_3} - \varvec{n}\otimes \varvec{n}\end{pmatrix} \begin{pmatrix} \delta \varvec{x}_1\\ \delta \varvec{x}_2\end{pmatrix}\\ &{}=&{} \begin{pmatrix} -\left( \mathbf {I_3} - \varvec{n}\otimes \varvec{n}\right) \ \ &{} \varvec{0}_{3\times 3}\ \ &{} \mathbf {I_3} - \varvec{n}\otimes \varvec{n}\ \ &{} \varvec{0}_{3\times 3} \end{pmatrix} \delta \varvec{g}\\ &{}=&{}\varvec{M} \,\delta \varvec{g}\end{array} \end{aligned}$$
(40)

One deduces from (38) that:

$$\begin{aligned} \begin{array}{rcl} \varDelta \varvec{t}_T &{}=&{} c_T\left( \mathbf {I_3} -\varvec{n}_T\otimes \varvec{n}_T\right) \varDelta \varvec{g}_{T} +\mu \,c_N\,\mathrm {sign}\left( g_{N}\right) \varDelta {g}_N\,\varvec{n}_T\\ &{}=&{} \left[ c_T\left( \mathbf {I_3} -\varvec{n}_T\otimes \varvec{n}_T\right) \varvec{M}+\mu \,c_N\,\mathrm {sign}\left( g_{N}\right) \varvec{N_T} \right] \varDelta \varvec{d}\end{array} \end{aligned}$$
(41)

and, finally:

$$\begin{aligned}&\varDelta \varvec{t}_T\cdot \delta \varvec{g}_{T}= \delta \varvec{g}_{T}^T\varDelta \varvec{t}_T = \nonumber \\&\delta \varvec{d}^T \left( \varvec{M}^{T} \left[ c_T\left( \mathbf {I_3} -\varvec{n}_T\otimes \varvec{n}_T\right) \varvec{M}+ \mu \,c_N\,\mathrm {sign}\left( g_{N}\right) \varvec{N}_T \right] \right) \varDelta \varvec{d}\nonumber \\&=\delta \varvec{d}^T \varvec{K}_T \,\varDelta \varvec{d}\end{aligned}$$
(42)

Note that matrix \(\varvec{K}_T\) is nonsymmetric.

Appendix C: Summary of the connector integration algorithm

As a reminder, a quantity a denoted by \(a_{(n)}\) corresponds to the value of a evaluated at time increment n. However, to alleviate the notations, the normal \(\mathbf {n}_{(n+1)}\) is noted only by \(\mathbf {n}\) and stays equal to \(\mathbf {n}_{(0)}\) under the small perturbations assumption.

The different steps of the connector model integration are summarized in Algorithm 1. \(\mathbf {P}_T\) represents the matrix for passing from the global frame to the local frame of the connector.

figure a

For a two-dimensional problem, the stiffness matrix of a Timoshenko beam \(\mathbf {K}_{bolt}\) is expressed as a function of the normal stiffness \(c_N\), the bending stiffness \(c_{bolt}\), its length L and the shear coefficient \(\varPhi \) depending on the section geometry as:

$$\begin{aligned} \mathbf {K}_{bolt} {=} \begin{pmatrix} c_N &{} 0 &{} 0 &{} -c_N &{} 0 &{} 0 \\ 0 &{} c_{bolt} &{} c_{bolt}\frac{L}{2} &{} 0 &{} -c_{bolt} &{} c_{bolt}\frac{L}{2} \\ 0 &{} c_{bolt}\frac{L}{2} &{} c_{bolt}\frac{(4+\varPhi )L^2}{12} &{} 0 &{} -c_{bolt}\frac{L}{2} &{} c_{bolt}\frac{(2-\varPhi )L^2}{12} \\ -c_N &{} 0 &{} 0 &{} c_N &{} 0 &{} 0 \\ 0 &{} -c_{bolt} &{} -c_{bolt}\frac{L}{2} &{} 0 &{} c_{bolt} &{} -c_{bolt}\frac{L}{2} \\ 0 &{} c_{bolt}\frac{L}{2} &{} c_{bolt}\frac{(2-\varPhi )L^2}{12} &{} 0 &{} -c_{bolt}\frac{L}{2} &{} c_{bolt}\frac{(4+\varPhi )L^2}{12} \end{pmatrix} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verwaerde, R., Guidault, PA. & Boucard, PA. A nonlinear finite element connector for the simulation of bolted assemblies. Comput Mech 65, 1531–1548 (2020). https://doi.org/10.1007/s00466-020-01833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01833-1

Keywords

Navigation