Skip to main content

Advertisement

Log in

Gram scale synthesis of QD450 core–shell quantum dots for cellular imaging and sorting

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In this study, we described an easy and one-pot synthesis technique for high-quality CdZnS/ZnS core/shell quantum dots, which exhibit greater fluorescence at λ450 nm with steady quantum yields in both organic and aqueous solvents. At lower concentrations, they showed a decrease in cytotoxicity, which is more suitable for the biocompatible applications. Further, we successfully demonstrated the fluorescence imaging and sorting through the surface display of the quantum dots in MCF-7 and HELA cell lines using confocal microscopy and flow cytometer studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aboulaich A, Billaud D, Abyan M, Balan L, Gaumet J-J, Medjadhi G, Ghanbaja J, Schneider R (2012) One-pot noninjection route to CdS quantum dots via hydrothermal synthesis. ACS Appl Mater Interfaces 4(5):2561–2569

    CAS  Google Scholar 

  • Ag D, Bongartz R, Dogan LE, Seleci M, Walter J-G, Demirkol DO, Stahl F, Ozcelik S, Timur S, Scheper T (2014) Biofunctional quantum dots as fluorescence probe for cell-specific targeting. Colloids Surf B 114:96–103

    CAS  Google Scholar 

  • Algar WR, Krull UJ (2008) Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates. Langmuir 24(10):5514–5520

    CAS  Google Scholar 

  • Amiri O, Emadi H, Hosseinpour-Mashkani SSM, Sabet M, Rad MM (2014) Simple and surfactant free synthesis and characterization of CdS/ZnS core–shell nanoparticles and their application in the removal of heavy metals from aqueous solution. RSC Adv 4(21):10990–10996

    CAS  Google Scholar 

  • Anikeeva PO, Halpert JE, Bawendi MG, Bulovic V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9(7):2532–2536

    CAS  Google Scholar 

  • Ayoubi M, Naserzadeh P, Hashemi MT, Rostami MR, Tamjid E, Tavakoli MM, Simchi A (2017) Biochemical mechanisms of dose-dependent cytotoxicity and ROS-mediated apoptosis induced by lead sulfide/graphene oxide quantum dots for potential bioimaging applications. Sci Rep 7(1):12896

    Google Scholar 

  • Azzazy HM, Mansour MM, Kazmierczak SC (2007) From diagnostics to therapy: prospects of quantum dots. Clin Biochem 40(13–14):917–927

    CAS  Google Scholar 

  • Bae WK, Nam MK, Char K, Lee S (2008) Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1−xZnxS/ZnS nanocrystals. Chem Mater 20(16):5307–5313

    CAS  Google Scholar 

  • Bae WK, Kwak J, Lim J, Lee D, Nam MK, Char K, Lee C, Lee S (2009) Deep blue light-emitting diodes based on Cd1−xZnxS@ZnS quantum dots. Nanotechnology 20(7):075202

    Google Scholar 

  • Bilan R, Fleury F, Nabiev I, Sukhanova A (2015) Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug Chem 26(4):609–624

    CAS  Google Scholar 

  • Boldt K, Bruns OT, Gaponik N, Eychmüller A (2006) Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers. J Phys Chem B 110(5):1959–1963

    CAS  Google Scholar 

  • Breus VV, Heyes CD, Tron K, Nienhaus GU (2009) Zwitterionic biocompatible quantum dots for wide pH stability and weak nonspecific binding to cells. ACS NanoNano 3(9):2573–2580

    CAS  Google Scholar 

  • Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12(8):972

    CAS  Google Scholar 

  • Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74(19):5132–5138

    CAS  Google Scholar 

  • Chen Y, Hl R, Liu N, Sai N, Liu X, Liu Z, Gao Z, Ba N (2010) A fluoroimmunoassay based on quantum dot−streptavidin conjugate for the detection of chlorpyrifos. J Agricu Food Chem 58(16):8895–8903

    CAS  Google Scholar 

  • Chen J, Yu L, Li Y, Cuellar-Camacho JL, Chai Y, Li D, Li Y, Liu H, Ou L, Li W (2019) Biospecific monolayer coating for multivalent capture of circulating tumor cells with high sensitivity. Adv Funct Mater 29(33):1808961

    Google Scholar 

  • Cui H, Wang B, Wang W, Hao Y, Liu C, Song K, Zhang S, Wang S (2018) Frosted slides decorated with silica nanowires for detecting circulating tumor cells from prostate cancer patients. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b06072

    Article  Google Scholar 

  • Gao X, Nie S (2004) Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal Chem 76(8):2406–2410

    CAS  Google Scholar 

  • Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z (2019) Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 100035

  • Geho D, Lahar N, Gurnani P, Huebschman M, Herrmann P, Espina V, Shi A, Wulfkuhle J, Garner H, Petricoin E (2005) Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjug Chem 16(3):559–566

    CAS  Google Scholar 

  • Giri S, Sykes EA, Jennings TL, Chan WC (2011) Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS NanoNano 5(3):1580–1587

    CAS  Google Scholar 

  • Gostner JM, Fong D, Wrulich OA, Lehne F, Zitt M, Hermann M, Krobitsch S, Martowicz A, Gastl G, Spizzo G (2011) Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer 11:45–45. https://doi.org/10.1186/1471-2407-11-45

    Article  CAS  Google Scholar 

  • Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7):631

    CAS  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169

    CAS  Google Scholar 

  • Jin L, Li J, Liu L, Wang Z, Zhang X (2018) Facile synthesis of carbon dots with superior sensing ability. Appl Nanosci 8(5):1189–1196

    CAS  Google Scholar 

  • Kajani AA, Bordbar A-K, Mehrgardi MA, Zarkesh-Esfahani SH, Motaghi H, Kardi M, Khosropour AR, Ozdemir J, Benamara M, Beyzavi MH (2018) Green and facile synthesis of highly photoluminescent multicolor carbon nanocrystals for cancer therapy and imaging. ACS Appl Bio Mater 1(5):1458–1467

    Google Scholar 

  • Kim K, Han CJ, Park YC, Cho Y-H, Jeong S (2013) Graded synthetic approach for the fabrication of nanocrystal quantum dots for enhanced carrier injection in light-emitting diodes. Nanotechnology 24(50):505601

    Google Scholar 

  • Kovtun O, Ross EJ, Tomlinson ID, Rosenthal SJ (2012) A flow cytometry-based dopamine transporter binding assay using antagonist-conjugated quantum dots. Chem Commun 48(44):5428–5430

    CAS  Google Scholar 

  • Krause MM, Mack TG, Jethi L, Moniodis A, Mooney JD, Kambhampati P (2015) Unraveling photoluminescence quenching pathways in semiconductor nanocrystals. Chem Phys Lett 633:65–69

    CAS  Google Scholar 

  • Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3(5):361

    CAS  Google Scholar 

  • Lee K-H, Lee J-H, Song W-S, Ko H, Lee C, Lee J-H, Yang H (2013) Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS NanoNano 7(8):7295–7302

    CAS  Google Scholar 

  • Lee K-H, Lee J-H, Kang H-D, Han C-Y, Bae SM, Lee Y, Hwang JY, Yang H (2014) Highly fluorescence-stable blue CdZnS/ZnS quantum dots against degradable environmental conditions. J Alloy Compd 610:511–516

    CAS  Google Scholar 

  • Li S, Jiang J, Yan Y, Wang P, Huang G, Hoon Kim N, Lee JH, He D (2018) Red, green, and blue fluorescent folate-receptor-targeting carbon dots for cervical cancer cellular and tissue imaging. Mater Sci Eng C 93:1054–1063

    CAS  Google Scholar 

  • Lin K, Xu W, Li W, Leng Y, Wu W, Peng X, Liang Y, Li L (2017) Establishment of a novel quantum dots-encoded microbead-based flow cytometric method for quantification of soluble FcεRIα in serum. Cytometry Part A 91(7):686–693

    CAS  Google Scholar 

  • Linkov P, Vokhmintcev K, Samokhvalov PS, Laronze-Cochard M, Sapi J, Nabiev IR (2018) Effect of the semiconductor quantum dot shell structure on fluorescence quenching by acridine ligand. JETP Lett 107(4):233–237

    CAS  Google Scholar 

  • Liu W, Choi HS, Zimmer JP, Tanaka E, Frangioni JV, Bawendi M (2007) Compact cysteine-coated CdSe (ZnCdS) quantum dots for in vivo applications. J Am Chem Soc 129(47):14530–14531

    CAS  Google Scholar 

  • Liu X, Jiang Y, Fu F, Guo W, Huang W, Li L (2013) Facile synthesis of high-quality ZnS, CdS, CdZnS, and CdZnS/ZnS core/shell quantum dots: characterization and diffusion mechanism. Mater Sci Semicond Process 16(6):1723–1729

    CAS  Google Scholar 

  • Liu S, Zhao J, Zhang K, Yang L, Sun M, Yu H, Yan Y, Zhang Y, Wu L, Wang S (2016) Dual-emissive fluorescence measurements of hydroxyl radicals using a coumarin-activated silica nanohybrid probe. Analyst 141(7):2296–2302

    CAS  Google Scholar 

  • Matsuno A, Itoh J, Takekoshi S, Nagashima T, Osamura RY (2005) Three-dimensional imaging of the intracellular localization of growth hormone and prolactin and their mRNA using nanocrystal (quantum dot) and confocal laser scanning microscopy techniques. J Histochem Cytochem 53(7):833–838

    CAS  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435

    CAS  Google Scholar 

  • Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, Sundaresan G, Wu A, Gambhir S, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    CAS  Google Scholar 

  • Noh M, Kim T, Lee H, Kim C-K, Joo S-W, Lee K (2010) Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots. Colloids Surf A 359(1–3):39–44

    CAS  Google Scholar 

  • Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL (2016) Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol 11(5):479

    CAS  Google Scholar 

  • Park J, Nam J, Won N, Jin H, Jung S, Jung S, Cho SH, Kim S (2011) Compact and stable quantum dots with positive, negative, or zwitterionic surface: specific cell interactions and non-specific adsorptions by the surface charges. Adv Func Mater 21(9):1558–1566

    CAS  Google Scholar 

  • Phadnis C, Sonawane KG, Hazarika A, Mahamuni S (2015) Strain-induced hierarchy of energy levels in CdS/ZnS nanocrystals. J Phy Chem C 119(42):24165–24173

    CAS  Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763

    CAS  Google Scholar 

  • Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708

    CAS  Google Scholar 

  • Shivaji K, Balasubramanian MG, Devadoss A, Asokan V, De Castro CS, Davies ML, Ponmurugan P, Pitchaimuthu S (2019) Utilization of waste tea leaves as bio-surfactant in CdS quantum dots synthesis and their cytotoxicity effect in breast cancer cells. Appl Surf Sci 487:159–170

    CAS  Google Scholar 

  • Singh N, Charan S, Sanjiv K, Huang S-H, Hsiao Y-C, Kuo C-W, Chien F-C, Lee T-C, Chen P (2012) Synthesis of tunable and multifunctional Ni-doped near-infrared QDs for cancer cell targeting and cellular sorting. Bioconjug Chem 23(3):421–430

    CAS  Google Scholar 

  • Smith AM, Nie S (2004) Chemical analysis and cellular imaging with quantum dots. Analyst 129(8):672–677

    CAS  Google Scholar 

  • Smith AM, Duan H, Rhyner MN, Ruan G, Nie S (2006) A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys 8(33):3895–3903

    CAS  Google Scholar 

  • Steckel JS, Zimmer JP, Coe-Sullivan S, Stott NE, Bulović V, Bawendi MG (2004) Blue luminescence from (CdS) ZnS core–shell nanocrystals. Angew Chem Int Ed 43(16):2154–2158

    CAS  Google Scholar 

  • Toufanian R, Piryatinski A, Mahler AH, Iyer R, Hollingsworth JA, Dennis AM (2018) Bandgap engineering of indium phosphide-based core/shell heterostructures through shell composition and thickness. Front Chem 6:567

    CAS  Google Scholar 

  • Wan Z, Luan W, Tu S-t (2010) Size controlled synthesis of blue emitting core/shell nanocrystals via microreaction. J Phys Chem C 115(5):1569–1575

    Google Scholar 

  • Yu WW, Peng X (2002) Formation of high-quality CdS and other II–VI semiconductor nanocrystals in non-coordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed 41(13):2368–2371

    CAS  Google Scholar 

  • Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860

    CAS  Google Scholar 

  • Zhai X, Zhang R, Lin J, Gong Y, Tian Y, Yang W, Zhang X (2015) Shape-controlled CdS/ZnS core/shell heterostructured nanocrystals: synthesis, characterization, and periodic DFT calculations. Cryst Growth Des 15(3):1344–1350

    CAS  Google Scholar 

  • Zhang W, Chen G, Wang J, Ye B-C, Zhong X (2009) Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg Chem 48(20):9723–9731

    CAS  Google Scholar 

  • Zhong X, Feng Y, Knoll W, Han M (2003) Alloyed ZnxCd1–xS nanocrystals with highly narrow luminescence spectral width. J Am Chem Soc 125(44):13559–13563

    CAS  Google Scholar 

  • Zhu Z-J, Yeh Y-C, Tang R, Yan B, Tamayo J, Vachet RW, Rotello VM (2011) Stability of quantum dots in live cells. Nat Chem 3(12):963

    CAS  Google Scholar 

Download references

Acknowledgments

Satyanarayana Swamy Vyshnava would like to thank for the fellowship provided to research and stay in Taiwan by Taiwan International Graduate Program (TIGP-NANO-2015) Academia Sinica, Taiwan. Facilities provided include chemical synthesis, cell culture and confocal Imaging by Prof Peilin Chen, RCAS, Academia Sinica; FEG-TEM by Institute of Physics, Academia Sinica; LSRII Flow Cytometry, Institute of Biomedical Sciences, Academia Sinica; FL290 PL Decay, Institute of Chemistry, Academia Sinica; UV- Visible Absorption Spectroscopy facility provided by Prof Chia-Fu Chou, Institute of Physics, Academia Sinica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayana Swamy Vyshnava.

Ethics declarations

Conflict of interest

This paper is original work form our group, the authors states that “there is no conflict to declare”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyshnava, S.S., Pandluru, G., Kanderi, D.K. et al. Gram scale synthesis of QD450 core–shell quantum dots for cellular imaging and sorting. Appl Nanosci 10, 1257–1268 (2020). https://doi.org/10.1007/s13204-020-01261-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01261-w

Keywords

Navigation