Skip to main content
Log in

Soil–projectile interaction during penetration of a transparent clay simulant

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Visualization of soil structure interaction during projectile penetration of clay is made possible by use of a surrogate composed of magnesium lithium phyllosilicate combined with high-speed photography and digital image correlation. A free-falling penetrator striking at 5.5 m/s simulated a projectile. Penetration resistance was constant within the resolution of the experiment; it was mainly due to the bearing resistance of the soil in contact with the nose, rather than skin friction. Bearing resistance in dynamic penetration for a hemispherical-nose rod was about 20% higher than quasi-static tests using a sphere. Bearing resistance was also about 20% higher for a hemispherical nose compared to a conical nose. Cavitation behind the nose is dependent on its shape with soils rebounding toward the projectile for conical noses but not hemispherical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ads A, Iskander M, Bless S (2020) Shear strength of a synthetic transparent clay for simulating soft marine sediments, using a miniature ball penetrometer (MBP) test. Geotech Test J. https://doi.org/10.1520/GTJ20190020

    Article  Google Scholar 

  2. Ahmed M, Iskander M (2012) Evaluation of tunnel face stability by transparent soil models. Tunn Undergr Space Technol 27(1):101–110

    Article  Google Scholar 

  3. Bless S, Peden B, Guzman I, Omidvar M, Iskander M (2014) Poncelet coefficients of granular media. Dyn Behav Mater 1:373–380

    Google Scholar 

  4. Bless SJ, Omidvar M, Iskander M (2018) Poncelet coefficients for dry sand. AIP Conf Proc 1:11000

    Google Scholar 

  5. Boguslavskii Y, Drabkin S, Juran I, Salman A (1996) Theory and practice of projectile’s penetration in soils. J Geotech Eng 122(10):806–812

    Article  Google Scholar 

  6. Borg JP, Morrissey M, Perich C, Vogler T, Chhabildas L (2013) In situ velocity and stress characterization of a projectile penetrating a sand target: experimental measurements and continuum simulations. Int J Impact Eng 51:23–35

    Article  Google Scholar 

  7. Borg JP, Sable P, Sandusky H, Felts J (2017) In situ characterization of projectile penetration into sand targets. In: AIP conference proceedings, vol 1793, No. 1, p 120014. AIP Publishing

  8. Børvik T, Dey S, Olovsson L (2015) Penetration of granular materials by small-arms bullets. Int J Impact Eng 75:123–139

    Article  Google Scholar 

  9. BYK Additives and Instruments (2014) Technical information B-RI 21–laponite–performance additive. BYK Additives and Instruments, Geretsried

    Google Scholar 

  10. Chen Z, Li K, Omidvar M, Iskander M (2016) Guidelines for DIC in geotechnical engineering research. Int J Phys Model Geotech 17(1):3–22

    Article  Google Scholar 

  11. Chen Z, Omidvar M, Iskander M, Bless S (2014) Modelling of projectile penetration using transparent soils. Int J Phys Model Geotech 14(3):68–79

    Article  Google Scholar 

  12. Chian SC, Tan BCV, Sarma A (2017) Projectile penetration into sand: relative density of sand and projectile nose shape and mass. Int J Impact Eng 103:29–37

    Article  Google Scholar 

  13. Chini CM, Wallace JF, Rutherford CJ, Peschel JM (2015) Shearing failure visualization via particle tracking in soft clay using a transparent soil. Geotech Test J 38(5):708–724

    Article  Google Scholar 

  14. Chow SH, Airey DW (2013) Free-falling penetrometers: a laboratory investigation in clay. J Geotech Geoenviron Eng 140(1):201–214

    Article  Google Scholar 

  15. Chow SH (2012) Rate effects in free-falling penetrometer tests in clay. Doctoral dissertation, The University of Sydney, Australia)

  16. DeJong J, Yafrate N, DeGroot D, Low HE, Randolph M (2010) Recommended practice for full-flow penetrometer testing and analysis. Geotech Test J 33(2):137–149

    Google Scholar 

  17. Forrestal MJ, Luk VK (1992) Penetration into soil targets. Int J Impact Eng 12(3):427–444

    Article  Google Scholar 

  18. Guzman I, Iskander M, Bless S, Qi C (2014) Terminal depth of penetration of spherical projectiles in transparent granular media. Granular Matter 16(6):829–884. https://doi.org/10.1007/s10035-014-0528-y

    Article  Google Scholar 

  19. Guzman IL, Iskander M, Bless S (2015) Observations of projectile penetration into a transparent soil. Mech Res Commun 70:4–11

    Article  Google Scholar 

  20. Guzman IL, Iskander M, Bless S (2020) A comparison of half and quarter space penetration into granular media. Geotech Test J. https://doi.org/10.1520/GTJ20190080

    Article  Google Scholar 

  21. Iskander M (2010) Modelling with transparent soils: visualizing soil structure interaction and multi phase flow, non-intrusively. Springer, Berlin

    Book  Google Scholar 

  22. Iskander M, Bathurst R, Omidvar M (2015) Past, present, and future of transparent soils. Geotech Test J 38(5):557–573

    Article  Google Scholar 

  23. Iskander M, Bless S, Omidvar M (2015) Rapid penetration into granular media: visualizing the fundamental physics of rapid earth penetration. Elsevier, Waltham

    Book  Google Scholar 

  24. Kashuk S, Mercurio SR, Iskander M (2015) Methodology for optical imaging of NAPL 3D distribution in transparent porous media. Geotech Test J 38(5):603–619

    Article  Google Scholar 

  25. Kumar NR, Muralidhar K, Joshi YM (2008) On the refractive index of ageing dispersions of Laponite. Appl Clay Sci 42(1):326–330

    Article  Google Scholar 

  26. Liu J, Iskander M (2004) Adaptive cross correlation for imaging displacements in soils. J Comput Civ Eng 18(1):46–57

    Article  Google Scholar 

  27. Nazem M, Carter JP, Airey DW, Chow SH (2012) Dynamic analysis of a smooth penetrometer free-falling into uniform clay. Géotechnique 62(10):893

    Article  Google Scholar 

  28. Omidvar M, Iskander M (2017) Soil deformations during finless torpedo installation. Geotech Front 280:389–397

    Google Scholar 

  29. Omidvar M, Chen Z, Iskander M (2014) Image-based Lagrangian analysis of granular kinematics. J Comput Civ Eng 29(6):04014101

    Article  Google Scholar 

  30. Omidvar M, Iskander M, Bless S (2012) Stress-strain behavior of sand at high strain rates. Int J Impact Eng 49:192–213

    Article  Google Scholar 

  31. Omidvar M, Iskander M, Bless S (2014) Response of granular media to rapid penetration. Int J Impact Eng 66:60–82

    Article  Google Scholar 

  32. Omidvar M, Iskander M, Bless S (2016) Soil–projectile interactions during low velocity penetration. Int J Impact Eng 93:211–221

    Article  Google Scholar 

  33. Omidvar M, Malioche JD, Bless S, Iskander M (2015) Phenomenology of rapid projectile penetration into granular soils. Int J Impact Eng 85:146–160

    Article  Google Scholar 

  34. Omidvar M, Malioche JD, Chen Z, Iskander M, Bless S (2014) Visualizing kinematics of dynamic penetration in granular media using transparent soils. Geotech Test J 38(5):656–672

    Google Scholar 

  35. Onate E (2009) Structural analysis with the finite element method: linear statics. Basis and solids, Vol. 1, Lecture notes on numerical methods in engineering and sciences. Springer, New York

  36. Sadek S, Iskander MG, Liu J (2003) Accuracy of digital image correlation for measuring deformations in transparent media. J Comput Civ Eng 17(2):88–96

    Article  Google Scholar 

  37. Suescun-Florez E, Iskander M, Kapila V, Cain R (2013) Geotechnical engineering in US elementary schools. Eur J Eng Educ 38(3):300–315

    Article  Google Scholar 

  38. True DG (1974) Rapid penetration into seafloor soils. In: Offshore technology conference

  39. Wallace JF, Rutherford CJ (2015) Geotechnical properties of LAPONITE RD®. Geotech Test J 38(5):574–587

    Article  Google Scholar 

  40. Wang J, Liu X, Liu S, Zhu Y, Pan W, Zhou J (2019) Physical model test of transparent soil on coupling effect of cut-off wall and pumping wells during foundation pit dewatering. Acta Geotech 14(1):141–162

    Article  Google Scholar 

  41. Young CW (1969) Depth prediction for earth-penetrating projectiles. J Soil Mech Found Div 95(3):803–818

    Google Scholar 

  42. Young CW (1981) An empirical equation for predicting penetration depth into soft sediments. In OCEANS 81. IEEE, pp 674–677

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Strategic Environmental Research and Development Program (SERDP) Project No: MR19-1277. An NAC HX5 high-speed camera was used. MLPS employed in this study is manufactured by BYK Additives & Instruments, Inc. and sold under the commercial name Laponite RD®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magued Iskander.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ads, A., Iskander, M. & Bless, S. Soil–projectile interaction during penetration of a transparent clay simulant. Acta Geotech. 15, 815–826 (2020). https://doi.org/10.1007/s11440-020-00921-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-00921-z

Keywords

Navigation