Skip to main content
Log in

Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Large scale activity-based simulation models inform a variety of transportation and planning policies using models that often rely on fixed or flexible workplace location in a synthetic population as input to work related activity, participation, and subsequent destination dependent travel decisions. Although discrete choice models can estimate workplace location with greater flexibility, disaggregate data available (e.g., travel surveys) are often too sparse to estimate workplace location at sufficient spatial detail. Alternatively, aggregated employment data are often readily available at higher spatial resolutions, but are typically only used in separately estimated ad hoc models, which introduces error if the estimations have divergent solutions. This paper’s primary contribution is to reduce error by integrating population synthesis and workplace assignment, yielding a synthetic population with home and work locations included as attributes. The two are integrated using additional variables shared between population and workplace assignment (i.e., industry sector), but this increased matrix size can render conventional multilevel person-household re-weighting methods computational intractable. A secondary contribution is to mitigate this scalability challenge using more efficient optimization-based re-weighting approaches, substantially reducing computation time. The proposed process is applied to the Greater Boston Area, generating a population of 4.6-million persons within 1.7-million households across 965 census tract zones. The integrated process is compared against conventional ad hoc location assignment process, using both classical and contemporary synthesis techniques of Iterative Proportional Fitting, Markov chain Monte Carlo simulation, and Bayesian Network simulation. The integrated approach yielded an improvement in workplace location assignment, with only modest impact on population accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Aal, M.M.M.: Calibrating a trip distribution gravity model stratified by the trip purposes for the city of Alexandria. Alex. Eng. J. 53(3), 677–689 (2014)

    Google Scholar 

  • Abraham, J.E., Stefan, K.J., Hunt, J.D.: Population synthesis using combinatorial optimization at multiple levels. In: Papers Presented at the 91th Annual Meeting of Transportation Research Board, Washington DC (2012). https://trid.trb.org/view/1130260

  • Adnan, M., Pereira, F.C., Azevedo, C.M.L., Basak, K., Lovric, M., Raveau, S., Zhu, Y., Ferreira, J., Zegras, C., Ben-Akiva, M.: SimMobility: a multi-scale integrated agent-based simulation platform. In: Transportation Research Board 95th Annual Meeting, Transportation Research Board, p. 18 (2016)

  • Anda, C., Ordonez Medina, S.A., Fourie, P.: Multi-agent urban transport simulations using OD matrices from mobile phone data. Proc. Comput. Sci. 130, 803–809 (2018)

    Google Scholar 

  • Arentze, T.A., Timmermans, H.J.: A learning-based transportation oriented simulation system. Transp. Res. Part B Methodol. 38(7), 613–633 (2004)

    Google Scholar 

  • Arentze, T., Timmermans, H., Hofman, F.: Creating synthetic household populations: problems and approach. Transp. Res. Rec. J. Transp. Res. Board 2014, 85–91 (2007)

    Google Scholar 

  • Auld, J., Mohammadian, A.: Efficient methodology for generating synthetic populations with multiple control levels. Transp. Res. Rec. J. Transp. Res. Board 2175(1), 138–147 (2010)

    Google Scholar 

  • Bachir, D., Khodabandelou, G., Gauthier, V., El Yacoubi, M., Puchinger, J.: Inferring dynamic origin-destination flows by transport mode using mobile phone data. Transp. Res. Part C Emerg. Technol. 101, 254–275 (2019)

    Google Scholar 

  • Ballas, D., Clarke, G., Dorling, D., Eyre, H., Thomas, B., Rossiter, D.: SimBritain: a spatial microsimulation approach to population dynamics. Popul. Space Place 11(1), 13–34 (2005a)

    Google Scholar 

  • Ballas, D., Clarke, G.P., Wiemers, E.: Building a dynamic spatial microsimulation model for Ireland. Popul. Space Place 11(3), 157–172 (2005b)

    Google Scholar 

  • Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K.: MATSim-T: architecture and simulation times. In: Bazzan, A., Klugl, F. (eds.) Multi-Agent Systems for Traffic and Transportation Engineering. IGI Global, pp. 57–78 (2009)

  • Barthelemy, J., Toint, P.L.: Synthetic population generation without a sample. Transp. Sci. 47(2), 266–279 (2013)

    Google Scholar 

  • Bassolas, A., Ramasco, J.J., Herranz, R., Cantú-Ros, O.G.: Mobile phone records to feed activity-based travel demand models: MATSim for studying a cordon toll policy in Barcelona. Transp. Res. Part A Policy Pract. 121(January), 56–74 (2019)

    Google Scholar 

  • Beckman, R.J., Baggerly, K.A., McKay, M.D.: Creating synthetic baseline populations. Transp. Res. Part A Policy Pract. 30(6), 415–429 (1996)

    Google Scholar 

  • Ben-Akiva, M.E., Lerman, S.R.: Discrete Choice Analysis: Theory and Application to Travel Demand, vol. 9. MIT press, Cambridge (1985)

    Google Scholar 

  • Bloomfield, P., Steiger, W.L.: Least Absolute Deviations. Birkhäuser Boston, Boston (1984)

    Google Scholar 

  • Borysov, S.S., Rich, J., Pereira, F.C.: How to generate micro-agents? A deep generative modeling approach to population synthesis. Transp. Res. Part C Emerg. Technol. 106, 73–97 (2019)

    Google Scholar 

  • Bowman, J., Ben-Akiva, M.: Activity-based disaggregate travel demand model system with activity schedules. Transp. Res. Part A Policy Pract. 35(1), 1–28 (2001)

    Google Scholar 

  • Bowman, J.L., Bradley, M., Shiftan, Y., Lawton, T.K., Ben-Akiva, M.E.: Demonstration of an activity based model system for Portland. In: 8th World Conference on Transport Research. Antwerp, Belgium (1998)

  • Bowman, J.L., Bradley, M., Castiglione, J., Yoder, S.L.: Making advanced travel forecasting models affordable through model transferability. Technical report, Bowman Research and Consulting.http://jbowman.net (2014)

  • Briem, L., Mallig, N., Vortisch, P.: Creating an integrated agent-based travel demand model by combining mobiTopp and MATSim. Proc. Comput. Sci. 151, 776–781 (2019)

    Google Scholar 

  • Casati, D., Müller, K., Fourie, P.J., Erath, A., Axhausen, K.W.: Synthetic population generation by combining a hierarchical, simulation-based approach with reweighting by generalized raking. Transp. Res. Rec. J. Transp. Res. Board 2493, 107–116 (2015)

    Google Scholar 

  • Choupani, A.A., Mamdoohi, A.R.: Population synthesis using iterative proportional fitting (IPF): a review and future research. Transp. Res. Proc. 17, 223–233 (2016)

    Google Scholar 

  • Computational Infrastructure for Operations Research (COIN-OR) Foundation (2017) Clp.https://www.coin-or.org/

  • Davis, R.A., Dunsmuir, W.T.M.: Least absolute deviation estimation for regression with ARMA errors. J. Theor. Probab. 10(2), 481–497 (1997)

    Google Scholar 

  • Deming, W.E., Stephan, F.F., Stephan, F.F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11(4), 427–444 (1940)

    Google Scholar 

  • Deville, J.C., Särndal, C.E., Sautory, O.: Generalized raking procedures in survey sampling. J. Am. Stat. Assoc. 88(423), 1013–1020 (1993)

    Google Scholar 

  • Dong, X., Ben-Akiva, M.E., Bowman, J.L., Walker, J.L.: Moving from trip-based to activity-based measures of accessibility. Transp. Res. Part A Policy Pract. 40(2), 163–180 (2006)

    Google Scholar 

  • Dt, L., Cernicchiaro, G., Zegras, C., Ferreira, J.: Constructing a synthetic population of establishments for the simmobility microsimulation platform. Transp. Res. Proc. 19, 81–93 (2016)

    Google Scholar 

  • Farooq, B., Bierlaire, M., Hurtubia, R., Flötteröd, G.: Simulation based population synthesis. Transp. Res. Part B Methodol. 58, 243–263 (2013)

    Google Scholar 

  • Fournier, N., Chen, S., Needell, Z., Lima, I.V.D., Deliali, K., Araldo, A., Prakash, A.A., Azevedo, C.M.L., Christofa, E., Trancik, J., Ben-Akiva, M., Akkinepally, A.: Integrated simulation of activity-based demand and multi-modal dynamic supply simulation for energy assessment. In: 21st IEEE International Conference on Intelligent Transportation Systems (2018)

  • Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1(2), 302–332 (2007)

    Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)

    Google Scholar 

  • Friedman J., Hastie, T., Tibshirani, R., Simon, N., Narasimhan, B., Qian, J.: glmnet: lasso and elastic-net regularized generalized linear models. https://cran.r-project.org/package=glmnet (2019)

  • Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Google Scholar 

  • Glover, F.: Tabu search—part II. ORSA J. Comput. 2(1), 4–32 (1990)

    Google Scholar 

  • Guevara, C.A.: Endogeneity and sampling of alternatives in spatial choice models. PhD thesis, Massachusetts Institute of Technology (2010)

  • Guo, J., Bhat, C.: Population synthesis for microsimulating travel behavior. Transp. Res. Rec. J. Transp. Res. Board 2014, 92–101 (2007)

    Google Scholar 

  • Hermes, K., Poulsen, M.: A review of current methods to generate synthetic spatial microdata using reweighting and future directions. Comput. Environ. Urban Syst. 36(4), 281–290 (2012)

    Google Scholar 

  • Huang, Z., Ling, X., Wang, P., Zhang, F., Mao, Y., Lin, T., Wang, F.Y.: Modeling real-time human mobility based on mobile phone and transportation data fusion. Transp. Res. Part C Emerg. Technol. 96, 251–269 (2018)

    Google Scholar 

  • Ireland, C.T., Kullback, S.: Contingency tables with given marginals. Biometrika 55(1), 179–188 (1968)

    Google Scholar 

  • Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia (1995)

    Google Scholar 

  • Li, M., Gao, S., Lu, F., Zhang, H.: Reconstruction of human movement trajectories from large-scale low-frequency mobile phone data. Comput. Environ. Urban Syst. 77, 101346 (2019)

    Google Scholar 

  • Lovelace, R., Ballas, D.: Truncate, replicate, sample: a method for creating integer weights for spatial microsimulation. Comput. Environ. Urban Syst. 41, 1–11 (2013)

    Google Scholar 

  • Lovelace, R., Dumont, M.: Spatial Microsimulation with R, 1st edn. CRC Press, Boca Raton (2016)

    Google Scholar 

  • Lovelace, R., Ballas, D., Watson, M.: A spatial microsimulation approach for the analysis of commuter patterns: from individual to regional levels. J. Transp. Geogr. 34, 282–296 (2014)

    Google Scholar 

  • Martinez, F., Donoso, P.: The MUSSA II land use auction equilibrium model. In: Pagliara, F., Preston, J., Simmonds, D. (eds.) Residential Location Choice, Springer, pp. 99–113 (2010)

  • McFadden, D.: Modelling the choice of residential location. Spat. Interact. Theory Plan. Models 673(477), 75–96 (1978)

    Google Scholar 

  • Mosteller, F.: Association and estimation in contingency tables. J. Am. Stat. Assoc. 63(321), 1 (1968)

    Google Scholar 

  • Mullen, K.M., van Stokkum, I.H.: The Lawson–Hanson algorithm for non-negative least squares. https://cran.r-project.org/web/packages/nnls/nnls.pdf (2015)

  • Nakanishi, W., Yamaguchi, H., Fukuda, D.: Feature extraction of inter-region travel pattern using random matrix theory and mobile phone location data. Transp. Res. Proc. 34, 115–122 (2018)

    Google Scholar 

  • Openshaw, S., Rao, L.: Algorithms for reengineering 1991 Census geography. Environ. Plan. A 27(3), 425–446 (1995)

    Google Scholar 

  • Pritchard, D.R., Miller, E.J.: Advances in population synthesis: fitting many attributes per agent and fitting to household and person margins simultaneously. Transportation 39(3), 685–704 (2012)

    Google Scholar 

  • Recker, W.W.: A bridge between travel demand modeling and activity-based travel analysis. Transp. Res. Part B Methodol. 35(5), 481–506 (2001)

    Google Scholar 

  • Saadi, I., Mustafa, A., Teller, J., Farooq, B., Cools, M.: Hidden Markov Model-based population synthesis. Transp. Res. Part B Methodol. 90, 1–21 (2016)

    Google Scholar 

  • Salvini, P., Miller, E.J.: ILUTE: An operational prototype of a comprehensive microsimulation model of urban systems. Netw. Spat. Econ. 5(2), 217–234 (2005)

    Google Scholar 

  • Scutari, M.: Bayesian network constraint-based structure learning algorithms: parallel and optimised implementations in the bnlearn R Package. J. Stat. Softw. 77(1) (2014). arXiv:1406.7648

  • Simini, F., González, M.C., Maritan, A., Barabási, A.L.: A universal model for mobility and migration patterns. Nature 484(7392), 96–100 (2012)

    Google Scholar 

  • Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39(5), 1 (2011)

    Google Scholar 

  • Stephan, F.F.: An iterative method of adjusting sample frequency tables when expected marginal totals are known. Ann. Math. Stat. 13(2), 166–178 (1942)

    Google Scholar 

  • Stouffer, S.A.: Intervening opportunities: a theory relating mobility and distance. Am. Sociol. Rev. 5(6), 845–867 (1940)

    Google Scholar 

  • Sun, L., Erath, A.: A Bayesian network approach for population synthesis. Transp. Res. Part C Emerg. Technol. 61, 49–62 (2015)

    Google Scholar 

  • Sun, L., Erath, A., Cai, M.: A hierarchical mixture modeling framework for population synthesis. Transp. Res. Part B Methodol. 114, 199–212 (2018)

    Google Scholar 

  • Train, K.: Qualitative Choice Analysis: Theory, Econometrics, and an Application to Automobile Demand. MIT press, Cambridge (1986)

    Google Scholar 

  • U.S. Census Bureau (2010) 2010 decennial census tables. https://www.census.gov/data.html

  • U.S. Census Bureau (2015) 5-year American community survey tables. https://www.census.gov/data.html

  • U.S. Census Bureau American Community Survey (2015) 2011–2015 ACS 5-year PUMS.https://www.census.gov/data.html

  • Voas, D., Williamson, P.: An evaluation of the combinatorial optimisation approach to the creation of synthetic microdata. Popul. Space Place 6(5), 349–366 (2000)

    Google Scholar 

  • Voorhees, A.M.: A general theory of traffic movement. Transportation 40(6), 1105–1116 (1956)

    Google Scholar 

  • Waddell, P.: UrbanSim: modeling urban development for land use, transportation, and environmental planning. J. Am. Plan. Assoc. 68(3), 297–314 (2002)

    Google Scholar 

  • Wagner, P., Wegener, M.: Urban land use, transport and environment models: experiences with an integrated microscopic approach. DisP-The Plan. Rev. 43(170), 45–56 (2007)

    Google Scholar 

  • Wilson, A.G.: Entropy in Urban and Regional Modelling, vol. 1. Routledge, Abingdon (2011)

    Google Scholar 

  • Wong, D.W.S.: The reliability of using the iterative proportional fitting procedure. Prof. Geogr. 44(3), 340–348 (1992)

    Google Scholar 

  • Ye, X., Konduri, K., Pendyala, R.M., Sana, B., Waddell, P.: A methodology to match distributions of both household and person attributes in the generation of synthetic populations. In: 88th Annual Meeting of the Transportation Research Board. Washington, DC (2009)

  • Zhang, D., Cao, J., Feygin, S., Tang, D., Shen, Z.J., Pozdnoukhov, A.: Connected population synthesis for transportation simulation. Transp. Res. Part C Emerg. Technol. 103, 1–16 (2019)

    Google Scholar 

  • Zhu, Y., Ferreira, J.: Synthetic population generation at disaggregated spatial scales for land use and transportation microsimulation. Transp. Res. Rec. J. Transp. Res. Board 2429, 168–177 (2014)

    Google Scholar 

Download references

Acknowledgements

This research was funded in part by the US DOE’s Advanced Research Projects Agency-Energy (ARPA-E) under the Traveler Response Architecture using Novel Signaling for Network Efficiency in Transportation (TRANSNET) program, with Award No. DE-AR0000611.

Author information

Authors and Affiliations

Authors

Contributions

NF: Literature review, manuscript writing, methodological development and analysis. EC: Methodological guidance, content planning, and manuscript editing. AA: Methodological guidance, interpretation of results, and manuscript editing. CA: Methodological guidance, literature review, and manuscript editing.

Corresponding author

Correspondence to Nicholas Fournier.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fournier, N., Christofa, E., Akkinepally, A.P. et al. Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method. Transportation 48, 1061–1087 (2021). https://doi.org/10.1007/s11116-020-10090-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-020-10090-3

Keywords

Navigation