Skip to main content

Advertisement

Log in

Study of Molybdenum-Tungsten Powder Compaction Processes by Spark Plasma Sintering

  • Published:
Metallurgist Aims and scope

This paper presents the results of studying the production of molybdenum-tungsten alloys by spark plasma sintering at various process conditions, as well as the processes of material compaction and structure formation. A comparative analysis of compactability of molybdenum-tungsten alloys produced by spark plasma sintering and sintering in hydrogen was performed. It was shown that a relative density of > 95% can be achieved at a temperature of 1,800°C and external pressure of 50 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Ye. N. Kablov, “Strategic directions of the development of materials and their processing technologies for the period up to 2030,” Aviats. Mater. Tekhnol., No. S, 7–17 (2012).

  2. Ye. N. Kablov, “New generation materials – the foundation of innovation, technological leadership, and national security of Russia,” Intell. Tekhnol., No. 2 (14), 16–21 (2016).

  3. Ye. N. Kablov, “Key issue – materials,” in: Trends and Guidelines for Innovative Development of Russia, VIAM, Moscow (2015), pp. 458-464.

  4. Ye. N. Kablov, “Evolvement of Russian space material science,” Vestn. Ross. Fond. Fund. Issled., No. 3 (95), 97–105 (2017).

  5. D. V. Grashchenkov, I. Yu. Yefimochkin, and A. N. Bolshakova, “High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds,” Aviats. Mater. Tekhnol., No. S, 318–328 (2017); DOI: 10.18577/ 2071-9140-2017-0-S-290-305.

  6. Ye. N. Kablov, O. G. Ospennikova, and A. V. Vershkov, “Rare metals and rare earth elements – modern and future high-tech materials,” Aviats. Mater. Tekhnol., No. S-2, 3–10 (2013).

  7. D. E. Kablov, P. V. Panin, A. A. Shiryaev, and N. A. Nochovnaya, “Experience of using vacuum-arc furnace ALD VAR L200 for melting ingots of titanium aluminide-based refractory alloys,” Aviats. Mater. Tekhnol., No. 2, 27–33 (2014); DOI: 10.18577/2071-9140-2014-0-2-27-33.

  8. M. I. Alymov, “Consolidated powder nanomaterials (review),” Aviats. Mater. Tekhnol., No. S4, 34–39 (2014); DOI: 10.18577/9.-9140-2014-0-s4-34-39.

  9. International Molybdenum Association [Electronic resource] (access date: July 17, 2018), URL: https://www.imoa.info/index.php.

  10. N. N. Morgunova, B. A. Klypin, V. A. Boyarshinov, et al., Molybdenum Alloys [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  11. Ye. M. Savitskii, G. S. Burkhanov, K. B. Povarova, Yu. V. Yefimov, et al., Refractory Metals and Alloys, Metallurgiya [in Russian], Moscow (1986).

  12. L. A. Barkov, V. N. Vydrin, V. V. Pastukhov, and V. N. Chernyshev, Rolling of Low-plasticity Metals with Multi-sided Reduction: Study Guide [in Russian], Metallurgiya, Chelyabinsk (1988).

    Google Scholar 

  13. A. K. Natanson (editor), Molybdenum: Collection of Papers [in Russian], Izd. Inostr. Lit., Moscow (1962).

    Google Scholar 

  14. R. Torresillas San Millan, N. V. Solis Pinargote, A. A. Okunkova, and P. Yu. Peretyagin, Fundamentals of the Process of Spark Plasma Sintering of Nanopowders [in Russian], Tekhnosfera, Moscow (2014).

  15. M. S. Boldin, Physical Principles of Spark Plasma Sintering Technology: Electronic Study Guide [in Russian], Nizhnii Novgorod State University, Nizhnii Novgorod (2012).

    Google Scholar 

  16. R. V. Batienkov, I. Yu. Yefimochkin, A. N. Bolshakova, and A. A. Khudnev, “Structure and properties of molybdenum-based powder alloys produced by spark plasma sintering,” in: Proc. 3rd All-Russ. Sci. Tech. Conf. “High-Temperature Ceramic Composites and Protective Coatings” [in Russian], FGUP VIAM, Moscow (2018), pp. 188–195.

  17. Z. A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method,” J. Mater. Sci.,41, 763–777 (2006).

    Article  CAS  Google Scholar 

  18. L. Wang, J. Zhang, and W. Jiang, “Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering,” Int. J. Refract. Met. Hard Mater.,39, 103–112 (2013).

    Article  Google Scholar 

  19. E. Lang, N. Madden, Ch. Smith, et al., “Microstructural and compositional effects of transition metal carbide additions on dispersion-strengthened tungsten fabricated via spark plasma sintering,” Int. J. Refract. Met. Hard Mater.,75, 279–286 (2018).

    Article  CAS  Google Scholar 

  20. B. Yavas and G. Goller, “Investigation of the effect of B4C addition on properties of TZM alloy prepared by spark plasma sintering,” Int. J. Refract. Met. Hard Mater.,58, 182–188 (2016).

    Article  CAS  Google Scholar 

  21. G. Lee, J. McKittrick, Ye. Ivanov, and Ye.A. Olevskii, “Densification mechanism and mechanical properties of tungsten powder consolidated by spark plasma sintering,” Int. J. Refract. Met. Hard Mater.,61, 22–29 (2016).

  22. R. Ohser-Wiedemann, U. Martin, H. J. Seifert, and A. Müller, “Densification behavior of pure molybdenum powder by spark plasma sintering,” Int. J. Refract. Met. Hard Mater.,28, 550–557 (2010).

    Article  CAS  Google Scholar 

  23. Yu. G. Dorofeev, Dynamic Hot Pressing in Metal Ceramics [in Russian], Metallurgiya, Moscow (1972).

    Google Scholar 

  24. R. Orrú, R. Licheri, A. M. Locci, et al., “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng. R.,63, 127–287 (2009).

    Article  Google Scholar 

  25. T. S. Srivatsan, B. G. Ravi, A. S. Nauka, et al., “The microstructure and hardness of molybdenum powders consolidated by plasma pressure compaction,” Powder Technol.,114, 136–144 (2001).

    Article  CAS  Google Scholar 

  26. T. S. Srivatsan, B. G. Ravi, M. Petraroli, and T. S. Sudarshan, “The microhardness and microstructural characteristics of bulk molybdenum samples obtained by consolidating nanopowders by plasma pressure compaction,” Int. J. Refract. Met. Hard Mater.,20, 181–186 (2002).

    Article  CAS  Google Scholar 

  27. K. C. Cho, R. H. Woodman, B. R. Klotz, and R. J. Dowding, “Plasma pressure compaction of tungsten powders,” Mater. Manuf. Process., No. 19, 619–630 (2004).

    Article  CAS  Google Scholar 

  28. R. V. Batienkov, I. O. Yershova, and O. B. Fedotenkova, “Properties of dispersion-hardened and composite materials based on Mo–30% W powder alloy,” in: Proc. 4th Conf. Young Prof. “Future development of metallurgical technologies” [in Russian], FGUP I. P. Bardin TsNIIChermet (2015), pp. 57–59.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. V. Batienkov, I. Yu. Efimochkin or A. A. Khudnev.

Additional information

Translated from Metallurg, Vol. 63, No. 12, pp. 78–83, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batienkov, R.V., Efimochkin, I.Y., Osin, I.V. et al. Study of Molybdenum-Tungsten Powder Compaction Processes by Spark Plasma Sintering. Metallurgist 63, 1329–1336 (2020). https://doi.org/10.1007/s11015-020-00955-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-020-00955-4

Keywords

Navigation