Skip to main content
Log in

An Increase in Process Characteristics of Flotation of Low-Grade Fine-Disseminated Scheelite Ores

  • MINERAL PROCESSING OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The results of investigations into increasing the contrast of process properties of calcite and scheelite due to the combined application of water glass with salts such as sulfates of aluminum, zinc, iron, magnesium; mixtures of water glass and calcium chloride; sodium carboxymethyl cellulose (CMC); combinations of sodium oleate with low-polar compounds (neonol and fatty iso-alcohols); and data on the ultrasonic treatment of the liquid phase and oleate are described. The lowest recovery of calcite during the flotation of a monomineral calcite fraction in the Hallimond tube is attained when jointly using salts of iron(II) and water glass (3(4) : 1). The joint application of water glass and CaCl2 during the flotation of the low-grade scheelite ore with a high carbonate modulus using tap water lowers the calcite flotability. When using recycled water, adding calcium chloride to water glass leads to a certain increase in the yield of the rough concentrate (from 13.8 to 14.1%) with a significant decrease in the recovery of WO3 into the final selection concentrate of scheelite (from 72.7 to 53.3%) and worsens the concentrate quality. The replacement of water glass by CMC showed no satisfactory results. The ultrasonic treatment of the pulp, liquid phase, and collector leads to a certain increase in calcite flotation activity, possibly due to an increase in the liquid phase temperature and in the fraction of the ionic form of oleate. The use of neonols in the reagent flotation mode of the scheelite-containing ore with a high carbonate modulus does not confirm a decrease in the flotation activity of calcite formed when studying monomineral calcite fractions, in contrast with fatty iso-alcohols, which make it possible to fabricate the higher quality concentrates in the selection cycle when compared with one oleate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Barskii, L.A., Kononov, O.V., and Ratmirova, L.I., Selektivnaya flotatsiya kal’tsiisoderzhashchikh mineralov (Selective Flotation of Calcium-Bearing Minerals), Moscow: Nedra, 1979.

  2. Pol’kin, S.I. and Adamov, E.V., Obogashchenie rud tsvetnykh metallov (Mineral Processing of Nonferrous Metals), Moscow: Nedra, 1983.

  3. Bocharov, V.A. and Ignatkina, V.A., Tekhnologiya obogashcheniya poleznykh iskopaemykh, tom 1 (Mineral Processing Technology, vol. 1), Moscow: Ruda i metally, 2007.

  4. Shepeta, E.D., Samatova, L.A., and Voronova, O.V., Promising trends in the development of mineral processing technologies for tungsten-containing ores and anthropogenic formations, Gorn. Zh., 2018, no. 10, pp. 67–71.

  5. Bo, F., Xianping, L., Jinging, W., and Pengcheng, W., The flotation separation of scheelite from calcite using acidified sodium silicate as depressant, Miner. Eng., 2015, vol. 80, pp. 45–49.

    Article  Google Scholar 

  6. Shi, Q., Feng, Q., Zhang, G., and Deng, H., A novel method to improve depressants actions on calcite flotation, Miner. Eng., 2014, vol. 55, pp. 186–189.

    Article  CAS  Google Scholar 

  7. Kupka, N. and Rudolph, M., Froth flotation of scheelite. A review, Int. J. Mining Sci. Technol., 2018, vol. 28, no. 3, pp. 373–384. https://doi.org/10.1016/j.ijmst.2017.12.001

    Article  CAS  Google Scholar 

  8. Ryazantseva, M.V., Bunin, I.Zh., and Koporulina, E.V., Use of pulsed energy effects to modify the structural and functional surface state of the process properties of calcium-containing minerals, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., 2016, no. 6, pp. 134–141.

  9. Ignatkina, V.A., Usichenko, S.D., and Milovich, F.O., Effect of nonionic oxyhydryl compounds and their mixtures with oleate on flotation activity of calcite, Mining Informational and Analytical Bulletin., 2018, no. 5, pp. 169–179. https://doi.org/10.25018/0236-1493-2018-10-0-169-179

    Article  Google Scholar 

  10. Shepeta, E.D., Ignatkina, V.A., and Samatova, L.A., Calcium minerals properties contrast increase in scheelite-carbonate ores flotation, Obogashch. Rud, 2017, no. 3, pp. 41–49. https://doi.org/10.17580/or.2017.03.07

  11. Liu, Ch., Feng, Q., Zhang, G., Chen, W., and Chen, Y., Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector, Int. J. Miner. Proc., 2016, vol. 157, pp. 210–215.

    Article  CAS  Google Scholar 

  12. Mohamed A.M. Abdall, Huiqing Peng, Hussein A. Younus, Di Wu, Leena Abusin, and Hui Shao, Effect of synthesized mustard soap on the scheelite surface during flotation, Colloids Surf. A, 2018, vol. 548, pp. 108–116. https://doi.org/10.1016/j.colsurfa.2018.01.055

    Article  CAS  Google Scholar 

  13. Ignatkina. V.A., Shepeta, E.D., Samatova, L.A., and Milovich, F.O., Flotation of a sheelite-carbonate ore with wide range of carbonate module, in Conf. Proc.: IMPC 2018–29th Int. Mineral Processing Congress (Moscow,2018), Canadian Inst. Mining, Metall. Petrol., 2019, pp. 1014–1025.

  14. Foucaud, Y., Filippova, I.V., and Filippov, L.O., Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system, Powder Technol., 2019, vol. 352, pp. 501–512. https://doi.org/10.1016/j.powtec.2019.04.071

    Article  CAS  Google Scholar 

  15. Deng, L., Zhao, G., Zhong, H., Wang, S., and Liu, G., Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation, J. Ind. Eng. Chem., 2016, vol. 33, pp. 131–141. https://doi.org/10.1016/j.jiec.2015.09.027

    Article  CAS  Google Scholar 

  16. Gao, Z., Bai, D., Sun, W., Cao, X., and Hu, Y., Selective flotation of scheelite from calcite and fluorite using a collector mixture, Miner. Eng., 2015, vol. 72, pp. 23–26. https://doi.org/10.1016/j.mineng.2014.12.025

    Article  CAS  Google Scholar 

  17. Filippov, L.O., Filippova, I.V., Lafhaj, Z., and Fornasiero, D., The role of a fatty alcohol in improving calcium minerals flotation with oleate, Colloids Surf. A, 2019, vol. 560, pp. 410–417. https://doi.org/10.1016/j.colsurfa.2018.10.022

    Article  CAS  Google Scholar 

  18. Hanumantha, Rao K. and Forssberg, K.S.E., Mixed collector systems in flotation, Int. J. Miner. Proc., 1997, vol. 51, nos. 1–4, pp. 67–79.

  19. Filippov, L.O., Shokhin, V.N., Yenbaeva, L.I., and Ignatkina, V.A., Improvement of engineering data for flotation of scheelite using combination of sodium oleate and Exol-B, Tsvetn. Met., 1993, no. 1, pp. 60–64.

  20. Gao, Y., Gao, Z., Sun, W., Yin, Z., Wang, J., and Hu, Y., Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation, J. Colloid Interface Sci., 2018, vol. 512, pp. 39–46. https://doi.org/10.1016/j.jcis.2017.10.045

    Article  CAS  Google Scholar 

  21. Filippov, L.O., Foucaud, Y., Filippova, I.V., and Badawi, M., New reagent formulations for selective flotation of scheelite from a skarn ore with complex calcium minerals gangue, Miner. Eng., 2018, vol. 123, pp. 85–94. https://doi.org/10.1016/j.mineng.2018.05.001

    Article  CAS  Google Scholar 

  22. Atademir, M.R., Kitchener, J.A., and Shergold, H.L., The surface chemistry and flotation of scheelite. II. Flotation “collectors”, Int. J. Miner. Proc., 1981, vol. 8, no. 1, pp. 9–16. https://doi.org/10.1016/0301-7516(81)90003-X

    Article  CAS  Google Scholar 

  23. Chun, B.J., Lee, S.G., Choi, J.I., and Jang, S.S., Adsorption of carboxylate on calcium carbonate (1014) surface: Molecular simulation approach, Colloids Surf. A, 2015, vol. 474, pp. 9–17. https://doi.org/10.1016/j.colsurfa.2015.03.003

    Article  CAS  Google Scholar 

  24. Cooper, T.G. and De Leeuw, N.H., A computer modeling study of the competitive adsorption of water and organic surfactants at surfaces of the mineral scheelite, Langmuir, 2004, vol. 20, no. 10, pp. 3984–3994. https://doi.org/10.1021/la049796w

    Article  CAS  Google Scholar 

  25. Deng, L., Zhao, G., Zhong, H., Wang, S., and Liu, G., Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation, J. Ind. Eng. Chem., 2016, vol. 33, pp. 131–141. https://doi.org/10.1016/j.jiec.2015.09.027

    Article  CAS  Google Scholar 

  26. Gao, Z.-Y., Sun, W., Hu, Y.-H., and Liu, X.-W., Surface energies and appearances of commonly exposed surfaces of scheelite crystal, Trans. Nonfer. Met. Soc. China (Eng. Ed.), 2013, vol. 23, no. 7, pp. 2147–2152. https://doi.org/10.1016/S1003-6326(13)62710-7.

    Article  CAS  Google Scholar 

  27. Gao, Z., Sun, W., and Hu, Y., New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model, Miner. Eng., 2015, vol. 79, no. 4664, pp. 54–61. https://doi.org/10.1016/j.mineng.2015.05.011

    Article  CAS  Google Scholar 

  28. Marinakis, K.I. and Kelsall, G.H., The surface chemical properties of scheelite (CaWO4). II. Collector adsorption and recovery pf the scheelite particles at the iso-octane/water interface, Colloids Surf., 1987, vol. 26, pp. 243–255. https://doi.org/10.1016/0166-6622(87)870119-1

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the collective of the Research Laboratory at the Flotation Plant of the Primorskii Mining Combine (settlement Vostok, Primorskii krai) for help in performing the investigations.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 17-05-00241.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Ignatkina, E. D. Shepeta or L. A. Samatova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatkina, V.A., Shepeta, E.D., Samatova, L.A. et al. An Increase in Process Characteristics of Flotation of Low-Grade Fine-Disseminated Scheelite Ores. Russ. J. Non-ferrous Metals 60, 609–616 (2019). https://doi.org/10.3103/S1067821219060063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821219060063

Keywords:

Navigation