Skip to main content
Log in

Influence of Aluminum Additives on the Content and Parameters of the Fine Structure of Titanium Silicon Carbide in SHS Powders

  • SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The dependence of the phase composition and parameters of a fine structure of titanium silicon carbide in powders formed by the self-propagating high-temperature synthesis on the aluminum concentration in the 5Ti/2Si/1C reaction mixture is investigated. The aluminum content is varied in a range of 0.1–0.4 mole fraction with the conservation of the total carbon content. It is established that the additives of aluminum not only affect the yield of titanium silicon carbide, but also promote the preferential formation of Ti5Si3 in synthesis products instead of TiSi2 identified in powders containing no aluminum. The introduction of a small amount of aluminum (0.1 mole fraction) leads to the formation of the Ti3Si1 – xAlxC2 solid solution and makes it possible to decrease the content of impurity phases in SHS powders by 6%. The silicon carbide concentration in SHS powders decrease at a higher aluminum content in the reaction mixture, while that of binary compounds (TiC, Ti5Si3, TiAl) correspondingly increases. No noticeable effect from the introduction of aluminum on the parameters of the crystal lattice of titanium silicon carbide in SHS powders is found in concentration limits of 0.1–0.25 mol %. A noticeable increase in parameters of a and c for Ti3Si1 – xAlxC2 (from a = 3.067 Å, c = 17.67 Å to a = 3.07 Å, c = 17.73 Å) with the conservation of the c/a ratio in limits of known values (c/a = 5.78) is observed only with the aluminum concentration of 0.4 mole fraction. The crystallite size of titanium silicon carbide depends, first and foremost, on the combustion parameters. At the same time, the deformation of the crystal lattice of Ti3Si1 – xAlxC2 in SHS powders increases monotonically with an increase in the aluminum content in the reaction mixture in the concentration range under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Barsoum, M.W. and El-Raghy, T., Synthesis and characterization of remarkable ceramics: Ti3SiC2, J. Am. Ceram. Soc., 1996, vol. 79, pp. 1953–1956. https://doi.org/10.1111/j.1151-2916.1996.tb08018.x

    Article  CAS  Google Scholar 

  2. Barsoum, M.W., Brodkin, D., and El-Raghy, T., Layered machinable ceramics for high temperature applications, Scripta Mater., 1997, vol. 36, pp. 535–541.

    Article  CAS  Google Scholar 

  3. Barsoum, M.W., El-Raghy, T., and Radovic, M., Ti3SiC2: a layered machinable ductile carbide, Interceram, 2000, vol. 49, pp. 226–233.

    CAS  Google Scholar 

  4. Zhang, Z.F., Sun, Z.M., and Hashimoto, H., Deformation and fracture behavior of ternary compound Ti3SiC2 at 25–1300°C, J.Mater. Lett., 2003, no. 57, pp. 1295–1299.

  5. Sun, Z.M., Progress in research and development of MAX phases: a family of layered ternary compounds, Int. Mater. Rev., 2011, vol. 56, pp. 143–166. https://doi.org/10.1179/1743280410Y.0000000001

    Article  CAS  Google Scholar 

  6. Istomin, PV., Nadutkin, A.V., Ryabkov, Yu.I., and Goldin, B.A., Preparation of Ti3SiC2, Inorg. Mater., 2006, vol. 42, no. 3, pp. 250–255.

    Article  CAS  Google Scholar 

  7. Pampuch, R., Lis, J., Stobierski, L., and Tymkiewicz, M., Solid combustion synthesis of Ti3SiC2, J. Eur. Ceram. Soc., 1989, vol. 5, p. 283–287. https://doi.org/10.1016/0955-2219(89)90022-8

    Article  CAS  Google Scholar 

  8. Lis, J., Miyamoto, Y., Pampuch, R., and Tanihata, K., Ti3SiC2-based materials prepared by HIP-SHS techniques, Mater. Lett., 1995, vol. 22, pp. 163–168.

    Article  CAS  Google Scholar 

  9. Grigoryan, A.E., Rogachev, A.S., Sychev, A.E., and Levashov, E.A., SHS and the formation of the structure of composite materials in the Ti–Si–C, Ti–Si–N, and Ti–B–N ternary systems, Ogneupory Tekh. Keram., 1999, no. 11, pp. 7–11.

  10. Riley, D.P., Kisi, E.H., Hansen, T.C., and Hewat, A.W., Self-propagating high-temperature synthesis of Ti3SiC2: I. Ultra-high-speed neutron diffraction study of the reaction mechanism, J. Am. Ceram. Soc., 2002, vol. 85, pp. 2417–2424. https://doi.org/10.1111/j.1151-2916.2002.tb00474.x

    Article  CAS  Google Scholar 

  11. Vadchenko, S.G., Sytschev, A.E., Kovalev, D.Yu., Shchukin, A.S., and Konovalikhin, S.V., Self-propagating high-temperature synthesis in the Ti–Si–C system: Features of product patterning, Nanotechnol. Russ., 2015, vol. 10, nos. 1–2, pp. 67–74.

    Article  CAS  Google Scholar 

  12. Radishevsky, V.L., Lepakova, O.K., and Afanasyev, N.I., Synthesis, structure, and properties of MAX phases Ti3SiC2 and Nb2AlC, Vestn. Tomsk. Gos. Univ. Khim., 2015, no. 1, pp. 33–38.

  13. Tayebifard, S.A. and Yazdani-Rad, R., The effect of Si substitution for SiC on SHS in the Ti–Si–C system, Int. J. SHS, 2018, vol. 27, no. 1, pp. 51–54. https://doi.org/10.3103/S1061386218010107

    Article  CAS  Google Scholar 

  14. Jeitschko, W. and Novotny, H., Die Kristallstructur Ti3SiC2—Ein Neuer Komplexcarbid-Typ, Monatash. Chem., 1967, vol. 98, pp. 329–337.

    Article  CAS  Google Scholar 

  15. Medvedeva, N.I., Ynayshin, A.N., and Ivanovskiy, A.L., Modeling of electronic structure, chemical bond, and properties of ternary silicocarbide Ti3SiC2, Zh. Struct. Khim., 2011, vol. 52, no. 4, pp. 806–822.

    Google Scholar 

  16. El-Raghy, T. and Barsoum, M.W., Processing and mechanical properties of Ti3SiC2: I. Reaction path and microstructure evolution, J. Am. Ceram. Soc., 1999, vol. 82, pp. 2849–2854.

    Article  CAS  Google Scholar 

  17. Wu, E., Kisi, E.H., Kennedy, S.J., and Studer, A.J., In situ neutron powder diffraction study of Ti3SiC2 synthesis, J. Am. Ceram. Soc., 2001, vol. 84, pp. 2281–2288. https://doi.org/10.1111/j.1151-2916.2001.tb01003.x

    Article  CAS  Google Scholar 

  18. Wu, E., Kisi, E.H., Riley, D.P., and Smith, R.I., Intermediate phases in Ti3SiC2 synthesis from Ti/SiC/C mixtures studied by time-resolved neutron diffraction, J. Am. Ceram. Soc., 2004, vol. 85, pp. 3084–3086. http://doi. org/.https://doi.org/10.1111/j.1151-2916.2002.tb00584.x

    Article  Google Scholar 

  19. Wu, E., Riley, D.P., Kisi, E.H., and Smith, R.I., Reaction kinetics in Ti3SiC2 synthesis studied by time-resolved neutron diffraction, J. Eur. Ceram. Soc., 2005, vol. 25, pp. 3503–3508. http://doi.https://doi.org/10.1016/j.jeurceramsoc.2004.09.005.

    Article  CAS  Google Scholar 

  20. Riley, D.P., Kisi, E.H., and Phelan, D., SHS of Ti3SiC2: ignition temperature depression by mechanical activation, J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1051–1058.

    Article  CAS  Google Scholar 

  21. Kisi, E.H., Hansen, T.C., and Hewat, A.W., Self-propagating high-temperature synthesis of Ti3SiC2 from 3Ti + SiC + C reactants, J. Mater. Sci. Lett., 2003, vol. 22, pp. 1101–1104.

    Article  Google Scholar 

  22. Zhang, Z.F., Sun, Z.M., Hashimoto, H., and Abe, T., Application of pulse discharge sintering (PDS) technique to rapid synthesis of Ti3SiC2 from Ti/Si/C powders, J. Eur. Ceram. Soc., 2002, vol. 22, pp. 2957–2961.

    Article  CAS  Google Scholar 

  23. Sun, Z.M., Yang, S., and Hashimoto, H., Ti3SiC2 powder synthesis, Ceram. Int., 2004, vol. 30, pp. 1873–1877.

    Article  CAS  Google Scholar 

  24. Zhang, Z.F., Sun, Z.M., Hashimoto, H., and Abe, T., A new synthesis reaction of Ti3SiC2 from Ti/TiSi2/TiC powder mixtures through pulse discharge sintering (PDS) technique, Mater. Res. Innovat., 2002, vol. 5, pp. 185–189.

    Article  CAS  Google Scholar 

  25. Yang, S., Sun, Z.M., and Hashimoto, H., Reaction in Ti3SiC2 powder synthesis from a Ti–Si–TiC powder mixture, J. Alloys Compd., 2004, vol. 368, pp. 312–317.

    Article  CAS  Google Scholar 

  26. Yeh, C.L. and Shen, Y.G., Effects of TiC addition on formation of Ti3SiC2 by self-propagating high-temperature synthesis, J. Alloys Compd., 2008, vol. 458, pp. 286–291.

    Article  CAS  Google Scholar 

  27. Yeh, C.L. and Shen, Y.G., Effects of SiC addition on formation of Ti3SiC2 by self-propagating high-temperature synthesis, J. Alloys Compd., 2008, vol. 461, pp. 654–660.

    Article  CAS  Google Scholar 

  28. Zhou, Y.C., Zhang, H.B., Liu, M.Y., Wang, J.Y., and Bao, Y.W., Preparation of TiC free Ti3SiC2 with improved oxidation resistance by substitution of Si with Al, Mater. Res. Innovat., 2004, vol. 8, pp. 97–102.https://doi.org/10.1080/14328917.2004.11784838.

    Article  CAS  Google Scholar 

  29. Zhang, H.B., Zhou, Y.C., Bao, Y.W., Li, M.S., and Wang, J.Y., Intermediate phases in synthesis of Ti3Si(Al)C2 solid solutions from elemental powders, J. Eur. Ceram. Soc., 2006, vol. 26, pp. 2373–2380.

    Article  CAS  Google Scholar 

  30. Yang, S., Sun, Z.M., Yang, Q., and Hashimoto, H., Effect of Al addition on the synthesis of Ti3SiC2 bulk material by pulse discharge sintering process, J. Eur. Ceram. Soc., 2007, vol. 27, pp. 4807–4812. https://doi.org/10.1016/j.jeurceramsoc.2007.03.038

    Article  CAS  Google Scholar 

  31. Zhang, Z.F., Sun, Z.M., and Hashimoto, H., Low temperature synthesis of Ti3SiC2 from Ti/SiC/C powders, Mater. Sci. Technol., 2004, vol. 20, pp. 1252–1256. https://doi.org/10.1179/026708304X6103

    Article  CAS  Google Scholar 

  32. Bish, D.L. and Howard, S.A., Quantitative phase analysis using the Rietveld method, J. Appl. Cryst., 1988, vol. 21, pp. 86–91.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research and Belarussian Republican Foundation for Basic Research, project nos. 18-58-00031 Bel_a and T18P-101.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. L. Talako, A. I. Letsko, Yu. A. Reutsionak, A. P. Abramchuk, S. A. Oglezneva, M. N. Kachenyuk or A. A. Smetkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

On the 85th Anniversary of the Birthday of Academician V.N. Antsiferov

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talako, T.L., Letsko, A.I., Reutsionak, Y.A. et al. Influence of Aluminum Additives on the Content and Parameters of the Fine Structure of Titanium Silicon Carbide in SHS Powders. Russ. J. Non-ferrous Metals 60, 704–709 (2019). https://doi.org/10.3103/S106782121906018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782121906018X

Keywords:

Navigation