Skip to main content
Log in

Present Status of ITER Neutron Diagnostics Development

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Neutron diagnostic systems are needed to monitor some important ITER parameters, such as fusion power, power density or ion temperature. The aim of this paper is to describe various systems, such as neutron cameras, internal and external flux monitors, activation system and spectrometers. Also, the current status of in situ neutron calibration strategy is reported. ITER is currently under construction in Cadarache (France) and neutron diagnostic systems are progressing from design stage to manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ITER website https://www.iter.org/

  2. G. Vayakis, E.R. Hodgson, V. Voitsenya, Chapter 12: generic diagnostic issues for a burning plasma experiment. Fusion Sci. Technol. 53, 699–750 (2008)

    Article  Google Scholar 

  3. M. Sasao, T. Nishitani, A. Krasilnikov, S. Popovichev, V. Kiptily et al., Fusion product diagnostics. Fusion Sci. Technol. 53, 604–639 (2008)

    Article  Google Scholar 

  4. L. Bertalot, et al., Fusion neutron diagnostics on ITER tokamak, in Proceedings of the FNDA-2011 (2011)

  5. M. Sasao et al., Issues on the absolute neutron emission measurement at ITER. Plasma Fusion Res. 8, 2402127 (2013)

    Article  ADS  Google Scholar 

  6. J. Yang et al., Fusion neutron flux monitor for ITER. Plasma Sci. Technol. 10, 141 (2008)

    Article  ADS  Google Scholar 

  7. M. Ishikawa et al., Design of microfission chambers for ITER operations. Rev. Sci. Instrum. 79, 10E507 (2008)

    Article  Google Scholar 

  8. A. Encheva, et al., Structural integrity report for ITER microfission chambers, ITER Doc. ITER_D_3TDURL (2011)

  9. Y. Kashchuk, A. Krasilnikov, D. Prosvirin, A conceptual project for a divertor monitor of the neutron yield in the ITER. Instrum. Exp. Technol. 49, 179–186 (2006)

    Article  Google Scholar 

  10. M.S. Cheon et al., In-Vessel design of ITER diagnostic neutron activation system. Rev. Sci. Instrum. 79, 10E505 (2008)

    Article  Google Scholar 

  11. A. Krasilnikov, C.I. Walker, Y. Kashchuk, D. Prosvirin, A multichannel neutron collimator for the ITER tokamak. Instrum. Exp. Technol. 47, 139 (2004)

    Article  Google Scholar 

  12. L. Petrizzi et al., Neutronic design of the ITER radial neutron camera. Fusion Sci. Eng. 82, 1308–1314 (2007)

    Article  Google Scholar 

  13. G. Ericsson, et al., Conceptual design of a high resolution neutron spectrometer system for ITER, in 26th IAEA Fusion Energy Conference, 2016 (2016)

  14. C. Hellesen et al., Conceptual design of a BackTOF neutron spectrometer for fuel ion ratio measurements at ITER. Nulc. Fusion 57, 066021 (2017)

    Article  ADS  Google Scholar 

  15. V. Krasilnikov, et al., Conceptual design of the ITER tangential neutral spectrometer, in High Temperature Plasma Diagnostic Conference, 2018 (2018)

  16. T. Kormilitsyn, et al., Assessment of the fast particle spectra for tangential spectrometer for H/He and DT ITER operation, in 44th EPS Conference on Plasma Physics, 2017 (2017)

  17. M. Nocente, M. Tardocchi et al., Conceptual design of the Radial Gamma Ray Spectrometer system for α particle and runaway electron measurements at ITER. Nucl. Fusion 57, 076016 (2017)

    Article  ADS  Google Scholar 

  18. L. Bertalot, et al., A strategy for calibrating the neutron system at ITER, in Proceedings of the 35th Plasma Physics Conference, 2008 (2008)

  19. M. Sasao, L. Bertalot, M. Ishikawa, S. Popovichev, Strategy for the absolute neutron emission measurement on ITER. Rev. Sci. Instrum. 81, 10D329 (2010)

    Article  Google Scholar 

  20. M. Ishikawa, T. Kondoh, K. Takeda, K. Itami, Neutron Transport Analysis of the process affecting the in situ calibration of ITER In-Vessel neutron flux monitor equipped with a micro-fission chamber system. Plasma Fusion Res. 11, 1402118 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank ITER Diagnostics Team and the colleagues of ITER Members of Japan, Korea, China, Europe, United State of America, India and Russian Federation for useful discussions and collaboration. The work described was supported and carried out by ITER Organization together with ITER Members and Domestic Agencies of Japan, Korea, China, Europe, United State of America, India and Russian Federation. Part of this activity was performed within the frame work of the European Fusion Development Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bertalot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertalot, L., Krasilnikov, V., Core, L. et al. Present Status of ITER Neutron Diagnostics Development. J Fusion Energ 38, 283–290 (2019). https://doi.org/10.1007/s10894-019-00220-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-019-00220-w

Keywords

Navigation