Skip to main content
Log in

Optical Properties of Porous Alumina Ceramics with Micron Open Cells

  • Published:
Journal of Applied Spectroscopy Aims and scope

Porous ceramic material is widely used in a great deal of fields. In this work, porous alumina ceramics with micron open cells are modeled by applying the inverse opal structure. The considered porous alumina ceramics are periodic with different size parameters. The diameters of spherical pores are 200, 400, 600, and 800 nm, while the ratios of height to diameter range from 0.1 to 0.9. The absorptivity, transmissivity, and reflectivity for the wavelength range from 0.2 to 2 μm are calculated using the finite difference time domain (FDTD) method. Then the effects of size parameters and incident angle on the optical properties are discussed. The results show that the absorptivity is usually very small. For the transmissivity, a wide dip in the transmission spectrum appears when the diameter and height exceed the critical values, and a red shift of the transmission spectrum's wide dip with increasing height is observed. When the incident wavelength is longer than the critical wavelength, the spectral transmissivities of porous ceramics with a certain diameter reach a stable domain. Moreover, the red shift of the wide dip, the critical incident wavelength, and the critical ratio of height to diameter are visibly affected by the size parameters and the incident angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, Appl. Phys. Lett., 74, 3933–3935 (1999).

    Article  ADS  Google Scholar 

  2. A. Richel, N. P. Johnson, and D. W. Mccomb, Appl. Phys. Lett., 76, 1816–1818 (2000).

    Article  ADS  Google Scholar 

  3. H. Míguez, F. Meseguer, C. López, F. López-Tejeira, and J. Sánchez-Dehesa, Adv. Mater., 13, 393–396 (2001).

    Article  Google Scholar 

  4. Daimu Muto, Sh inobu Hashimoto, Sa wao Honda, Yu suke Daiko, an d Yuji Iwamoto, Ceram. Int., 44, 3678–3683 (2017).

  5. H. Asoh, A. Uehara, and S. Ono, Jpn. J. Appl. Phys., 43, L1159–L1161 (2014).

    Article  ADS  Google Scholar 

  6. J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, Chem. Mater., 13, 4486–4499 (2001).

    Article  Google Scholar 

  7. J. E. G. J. Wijnhoven and W. L. Vos, Science, 281, 802–804 (1998).

    Article  ADS  Google Scholar 

  8. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transf., 151, 260–268 (2015).

    Article  ADS  Google Scholar 

  9. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transf., 112, 1082–1089 (2011).

    Article  ADS  Google Scholar 

  10. V. A. Loiko and A. A. Miskevich, Opt. Spectrosc., 122, 799–812 (2017).

    Article  ADS  Google Scholar 

  11. K. P. Furlan, R. M. Pasquarelli, T. Krekeler, M. Ritter, R. Zierold, K. Nielsch, G. A. Schneider, an d R. Janssen, Ceram. Int., 43, 11260–11264 (2017).

  12. S. S. Bristy, M. A. Rahman, K. Tauer, H. Minamic, and H. Ahmad, Ceram. Int., 44, 3951–3959 (2018).

    Article  Google Scholar 

  13. Ruixia Shi, Yaru Shang, Yan Zhang, Peng Wang, Aiyu Zhang, and Ping Yang, Ceram. Int., 44, 3741–3750 (2017)

  14. A. Bakken, S. Wagner, M. J. Hoffmann, B. Thorstensen, M. A. Einarsrud, and T. Grande, J. Eur. Ceram. Soc., 38, 665–670 (2017).

    Article  Google Scholar 

  15. Xiao yun Song, Qingxin Guan, Zitao Cheng, and Wei Li, Appl. Catal. B: Environ., 227, 13–23 (2018).

  16. M. Gallei, Macromol. Rapid. Commun., 39, 1700648 (2017).

    Article  Google Scholar 

  17. A. A. Miskevich and V. A. Loiko, J. Exp. Theor. Phys., 113, 1 (2011).

    Article  ADS  Google Scholar 

  18. G. Contento, M. Oliviero, N. Bianco, and V. Naso, Int. J. Heat Mass Transf., 76, 499–508 (2014).

    Article  Google Scholar 

  19. G. Von Freymann, S. John, M. Schulz-Dobrick, E. Vekris, N. Tétreault, S. Wong, V. Kitave, and G. A. Ozin, Appl. Phys. Lett., 84, 224–226 (2004).

    Article  ADS  Google Scholar 

  20. X. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, Adv. Mater., 19, 1689–1692 (2007).

    Article  Google Scholar 

  21. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, Proc. Natl. Acad. Sci., 109, 2280–2285 (2012).

    Article  ADS  Google Scholar 

  22. Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, Int. J. Heat Mass Transf., 98, 833–844 (2016).

    Article  Google Scholar 

  23. Z. Chen and N. Brandon, Ceram. Int., 42, 8316–8324 (2016).

    Article  Google Scholar 

  24. V. A. Loiko and A. A. Miskevich, Opt. Spectrosc., 115, 274–282 (2013).

    Article  ADS  Google Scholar 

  25. A. A. Miskevich, V. A. Loiko, J. Quant. Spectrosc. Radiat. Transf., 136, 58–70 (2014).

    Article  ADS  Google Scholar 

  26. R. Liu, Y. Li, C. A. Wang, and S. Tie, Mater. Design., 63, 1–5 (2014).

    Article  Google Scholar 

  27. F. Tian, L. Jing, J. Shi, and M. Yang, Sensor. Actuator. B: Chem., 225, 312–318 (2016).

    Article  Google Scholar 

  28. S. Li, C. A. Wang, and J. Zhou, Ceram. Int., 39, 8833–8839 (2013).

    Article  Google Scholar 

  29. A. M. Kapitonov, N. V. Gaponenko, V. N. Bogomolov, A. V. Prokofi ev, S. M. Samoilovich, and S. V. Gaponenko, Phys. Status Solidi (A), 165, 119–123 (1998).

  30. R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneide, J. Am. Ceram. Soc., 95, 2226–2235 (2012).

    Article  Google Scholar 

  31. G. Guan, K. Kusakabe, H. Ozono, M. Taneda, M. Uehara, and H. Maeda, Chem. Eng. J., 135, 232–237 (2008).

    Article  Google Scholar 

  32. M. Munro, J. Am. Ceram. Soc., 80, 1919–1928 (1997).

  33. S. Mallakpour and M. Dinari, Mater. Res. Bull.,48, 3865–3872 (2013).

    Article  Google Scholar 

  34. K. Noh, K. S. Brammer, T. Y. Seong, and S. Jin, Nano, 06, 541–555 (2011).

    Article  Google Scholar 

  35. M. Cárdenas, T. Arnebrant, A. Rennie, G. Fragneto, R. K. Thomas, and L. Lindh, Biomacromolecules, 8, 65–69 (2007).

    Article  Google Scholar 

  36. I. Vlassiouk, A. Krasnoslobodtsev, S. Smirnov, and M. Germann, Langmuir, 20, 9913–9915 (2004).

    Article  Google Scholar 

  37. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, Orlando (1985).

  38. K. S. Yee, IEEE Trans. Anten. Propag., 14, 302–307 (1966).

    Article  ADS  Google Scholar 

  39. Y. B. Chen and Z. M. Zhang, Opt. Commun., 269, 411–417 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xia.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 6, p. 1010, November–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Sun, C., Chen, X. et al. Optical Properties of Porous Alumina Ceramics with Micron Open Cells. J Appl Spectrosc 86, 1138–1145 (2020). https://doi.org/10.1007/s10812-020-00951-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00951-1

Keywords

Navigation