Skip to main content
Log in

Transmission and Reflection Spectra of Zinc Oxide Implanted with a High Dose of Cobalt Ions

  • Published:
Journal of Applied Spectroscopy Aims and scope

Optical transmission and reflection spectra of monocrystalline zinc oxide (ZnO) plates implanted with 40 keV Co+ ions to high doses of (0.5–1.5)·1017 cm–2 are presented. With increasing dose, the transmission value decreases and the optical transmission edge shifts towards the long-wavelength region in transmission spectra. Also, in the transmission spectra, three absorption bands are observed in the range of 550–680 nm. The bands and their positions are typical of optically active Co2+ ions in the zinc cation substitution positions in the ZnO matrix. The reflection coefficient of the implanted side of the ZnO plate increases monotonically with increasing dose values. In both the initial and implanted ZnO plates, when reflection spectra are recorded from the reverse (nonirradiated) side, a characteristic structure at l = 375 nm is observed due to exciton reflection. Modeling of light transmission and reflection in cobalt-implanted ZnO samples was carried out within the framework of a three-layer model, in which the first surface layer contains cobalt nanoinclusions, the second, deeper layer is a solid solution of cobalt ion substitution in the ZnO matrix, the third layer is the unirradiated part of the ZnO plate. Modeling was used to determine effective refractive indices of two ZnO layers containing implanted cobalt admixture in different phase states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ozgur, J. Appl. Phys., 98, 041301 (2005).

  2. C. Klingshirn, Phys. Status Solidi B, 247, No. 6, 1424–1447 (2010).

    Article  ADS  Google Scholar 

  3. A. Kharchenko, Yu. A. Bumai, A. I. Gumarov, M. G. Lukashevich, V. I. Nuzhdin, R. I. Khaibullin, and V. B. Odzhaev, Vestn. Belorusskogo Gos. Univ., Ser. 1, Fiz. Mat. Inform., No. 1, 20–25 (2014).

  4. A. I. Gumarov, V. F. Valeev, V. I. Golovchuk, N. M. Lyadov, M. G. Lukashevich, V. I. Nuzhdin, L. R. Tagirov, A. I. Fayzrakhmanov, and R. I. Khaibullin, Mater. 12th Int. Conf. VITT-2017, September 19–22, 2017, Minsk, Belarus (2017), pp. 231–233.

  5. A. A. Achkeev, R. I. Khaibullin, and L. R. Tagirov, Phys. Sol. State, 53, No. 3, 543–553 (2011).

    Article  ADS  Google Scholar 

  6. J. J. Wu, W. S. C. Liu, and M. H. Yang, Appl. Phys. Lett., 85, 1027 (2004).

    Article  ADS  Google Scholar 

  7. M. Naeem, S. K. Hasanain, and A. Mumtaz, J. Phys.: Cond. Matter, 20025210, 97 (2008).

    Google Scholar 

  8. G. P. Joshi, N. S. Sahena, R. Mandal, A. Mishra, and T. P. Sharma, Dull. Nat. Sci. Ind. Acad. Sci., 26, No. 9, 378 (2003).

    Google Scholar 

  9. A. E. Manouni, M. Tortosa, and F. J. Manjon, Microelectron. J., 40, 268–271 (2009).

    Article  Google Scholar 

  10. С. J. Cong, J. H. Hong, and K. J. Zhang, Mater. Chem. Phys., 113, 435–440 (2009).

    Article  Google Scholar 

  11. P. Koidl, Phys. Rev. B, 15, 2493–2499 (1977).

    Article  ADS  Google Scholar 

  12. A. L. Stepanov, Opt. Spektrosk., 89, No. 3, 444–449 (2000).

    Article  Google Scholar 

  13. A. L. Stepanov, D. Khole, and V. N. Popok, Pis′ma Zh. Tekh. Fiz., 27, No. 13, 57–63 (2001).

  14. A. Y.-C. Yu, N. M. Donovan, and W. E. Spicer, Phys. Rev., 167, No. 3, 670–673 (1968).

    Article  ADS  Google Scholar 

  15. D. J. Thomas, J. Phys. Chem. Sol., 15, 86–96 (1960).

    Article  Google Scholar 

  16. Yu. A. Bumai, V. S. Volobuev, V. F. Valeev, N. I. Dolgikh, M. G. Lukashevich, R. I. Khaibullin, V. I. Nuzhdin, and V. B. Odzhaev, Zh. Prikl. Spektrosk., 79, No. 5, 781–787 (2012) [Yu. A. Bumai, V. S. Volobuev, V. F. Valeev, N. I. Dolgikh, M. G. Lukashevich, R. I. Khaibullin, V. I. Nuzhdin, and V. B. Odzhaev, J. Appl. Spectrosc., 79, 773–779 (2012)].

  17. V. I. Golovchuk, A. I. Gumarov, Yu. A. Bumai, V. F. Valeev, M. G. Lukashevich, V. I. Nuzhdin, V. B. Odzhaev, A. A. Kharchenko, and R. I. Khaibullin, Coll. Reports VIII Int. Sci. Conf. ″Interaction of Radiations with Solids, Minsk, Belarus, September 24–28, 2018, Vol. 1 of 3, State Scientifi c and Production Association "Scientifi c and Practical Center of the National Academy of Sciences of Belarus for Materials Science," Kovcheg Publishing, Minsk (2018), pp. 192–194.

  18. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Verlag, Berlin (1995), pp. 275–436.

    Chapter  Google Scholar 

  19. N. Kishimoto, Y. Takeda, N. Umeda, V. T. Crityna, and Lee Saito, Nucl. Instr. Meth., 166B, 840–844 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Bumai.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 6, pp. 925–931, November–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bumai, Y.A., Valeev, V.F., Golovchuk, V.I. et al. Transmission and Reflection Spectra of Zinc Oxide Implanted with a High Dose of Cobalt Ions. J Appl Spectrosc 86, 1039–1044 (2020). https://doi.org/10.1007/s10812-020-00936-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00936-0

Keywords

Navigation