Skip to main content
Log in

Monitoring Lithology Variations in Drilled Rock Formations Using NMR Apparent Magnetic Susceptibility Contrast

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) is a powerful technique for determining the petrophysical properties (porosity, permeability, and fluid mobility) of subsurface reservoirs through well logs, laboratory core analysis, or surface measurements of drill cuttings at the rig site. In well logging, NMR is considered a lithology-independent tool, but in surface measurements, it is possible to determine the apparent magnetic susceptibility contrast between the rock and a saturating liquid from a measure of the free induction decay. The magnetic susceptibility of the rock is influenced by paramagnetic minerals (iron and manganese oxides) and provides a simple method for detecting variations in lithology, particularly shale bands. Here, NMR measurements of apparent magnetic susceptibility contrast are obtained on a selection of core plugs, powdered rock, and drilled cuttings using a commercial bench top instrument, and shown to correlate to the iron content of the samples. This rapid and robust analysis complements the standard NMR petrophysical measurements and could be used to detect formation tops in near-real-time at the rig site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Whittaker, Mud Logging Handbook (Prentice Hall, Upper Saddle River, 1991)

    Google Scholar 

  2. S. Bargach, I. Falconer, C. Maeso, J. Rasmus, T. Bornemann, R. Plumb, D. Codazzi, K. Hodenfield, G. Ford, J. Hartner, B. Grether, H. Rohler, Schlumberger Oilfield Rev. 12, 58 (2000)

    Google Scholar 

  3. T. Loermans, M. Kanj, C. Bradford, in Proceedings of the SPE Technical Symposium (Dhahran, Saudi Arabia, May 14–16, 2005), SPE paper SPE-106324

  4. T. Loermans, F. Kimour, C. Bradford, K. Bondabou, A. Marsala, in Proceedings of the SPWLA 53rd Annual Logging Symposium (Cartagena, Columbia, June 16–20, 2012), Paper SPWLA-2012-184

  5. D. Collinson, Methods in Rock Magnetism and Palaeomagnetism: Techniques and Instrumentation (Chapman & Hall, New York, 1983)

    Google Scholar 

  6. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953)

    MATH  Google Scholar 

  7. A. Perez-Perez, H. Romero, L. D’Onofrio, Geophys. 81, J35 (2016)

    Google Scholar 

  8. D. Potter, Petrophysics 48, 191 (2007)

    Google Scholar 

  9. M. Mena, A. Walther, Geol. Soc. Lond. Special Pubs. 371, 217–228 (2012). https://doi.org/10.1144/SP371.14

    Article  ADS  Google Scholar 

  10. A. Ali, D. Potter, A. Tugwell, in Proceedings of the Society of Core Analysts Annual Symposium (St Johns, Newfoundland, Canada, 16–21 August 2015, 2015) Paper 036

  11. L. Mulay, Physical Methods of Chemistry, vol. 1 (Interscience, New York, 1972)

    Google Scholar 

  12. D. Evans, J. Phys. E Sci. Instrum. 7, 247 (1974)

    ADS  Google Scholar 

  13. P. Connolly, W. Yan, D. Zhang, M. Mahmoud, M. Verrall, M. Lebedev, S. Iglauer, P. Metaxas, E. May, M. Johns, J. Petrol. Sci. Eng. 175, 985 (2019)

    Google Scholar 

  14. G. Feher, W. Knight, Rev. Sci. Instrum. 26, 293 (1955)

    ADS  Google Scholar 

  15. K. Frei, H. Bernstein, J. Chem. Phys. 37, 1891 (1962)

    ADS  Google Scholar 

  16. R. Kleinberg, Concept. Magn. Reson. 342, 13 (2001)

    Google Scholar 

  17. A. Valori, G. Hursan, S. Ma, Petrophysics 58, 352 (2017)

    Google Scholar 

  18. H. Carr, E. Purcell, Phys. Rev. 94, 630 (1954)

    ADS  Google Scholar 

  19. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 668 (1958)

    ADS  Google Scholar 

  20. K. Washburn, C. Eccles, P. Callaghan, J. Magn. Reson. 194, 33 (2008)

    ADS  Google Scholar 

  21. E. Hahn, Phys. Rev. 77, 297 (1950)

    ADS  Google Scholar 

  22. N. Fatkullin, Sov. Phys. JETP 74, 833 (1991)

    Google Scholar 

  23. D. Grebenkov, Rev. Mod. Phys. 79, 1077 (2007)

    ADS  Google Scholar 

  24. S. Majumdar, J. Gore, J. Magn. Reson. 78, 41 (1988)

    ADS  Google Scholar 

  25. Q. Chen, A. Marble, B. Colpitts, B. Balcom, J. Magn. Reson. 175, 300 (2005)

    ADS  Google Scholar 

  26. E. Fukushima, S. Roeder, Experimental Pulse NMR: A Nuts and Bolts Approach (Addison-Wesley Publishing Company, Reading, 1981)

    Google Scholar 

  27. T. de Swiet, P. Sen, J. Chem. Phys. 100, 5597 (1994)

    ADS  Google Scholar 

  28. J. Mitchell, T. Chandrasekera, L. Gladden, J. Chem. Phys. 132, 244705 (2010)

    ADS  Google Scholar 

  29. M. Hürlimann, A. Matteson, J. Massey, D. Allen, E. Fordham, F. Antonsen, H. Rueslatten, Petrophysics 45, 414 (2004)

    Google Scholar 

  30. E. Nigh, M. Taylor, Can. Well Log. Soc. J. 13, 45 (1984)

    Google Scholar 

  31. K. Mirotchnik, S. Kryuchkov, K. Strack, in Proceedings of the SPWLA 45th Annual Logging Symposium (Noordwijk, The Netherlands, June 6–9, 2004), Paper SPWLA-2004-MM

  32. Z. Wang, Y. Martinez, K. Strack, G. Yu, in Proceedings of the SPWLA 48th Annual Logging Symposium (Austin, Texas, United States, June 3–6, 2007), Paper SPWLA-2007-X

  33. M. Dick, D. Green, T. Kenney, D. Veselinoivc, J. Tallarita, M. Smith, in Proceedings of the Society of Core Analysts Annual Symposium (Vienna, Austria, 28 August – 1 September 2017, 2017) Paper 013

  34. K. Fellah, S. Utusuzawa, Y. Song, R. Kausik, Energy Fuels 32, 7467 (2018)

    Google Scholar 

  35. J. Mitchell, A. Valori, E. Fordham, J. Petrol. Sci. Eng. 174, 351 (2019)

    Google Scholar 

  36. D. Georgi, T. Loermans, SPWLA Today 1, 14 (2018)

    Google Scholar 

  37. B. Nicot, P. Ligneul, M. Akbar, US patent 9423365 B2, Granted: 23 Aug 2016

  38. M. Carroll, K. O’Neill, N. Bristow, T. Hopper, S. Vogt, M. Johns, E. Fridjonsson, Min. Eng. 122, 211 (2018)

    Google Scholar 

  39. M. Hürlimann, J. Magn. Reson. 131, 232 (1998)

    ADS  Google Scholar 

  40. R. Lewis, J. Seland, J. Magn. Reson. 263, 19 (2016)

    ADS  Google Scholar 

  41. J. Mitchell, T. Chandrasekera, M. Johns, L. Gladden, E. Fordham, Phys. Rev. E 81, 026101 (2010)

    ADS  Google Scholar 

  42. J. Mitchell, J. Magn. Reson. 240, 52 (2014)

    ADS  Google Scholar 

  43. J. Schenck, Med. Phys. 23, 815 (1996)

    Google Scholar 

  44. E. Haacke, R. Brown, M. Thompson, R. Vankatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design (Wiley, New York, 1999)

    Google Scholar 

  45. M. Peyron, G. Pierens, A. Lucas, L. Hall, G. Potter, R. Stewart, D. Phelps, Magn. Reson. Imaging 12, 295 (1994)

    Google Scholar 

  46. J. Mitchell, J. Staniland, R. Chassagne, E. Fordham, Transp. Porous Med. 94, 683 (2012)

    Google Scholar 

  47. C. Straley, D. Rossini, H. Vinegar, P. Tutunjian, C. Morris, Log Anal. 38, 84 (1997)

    Google Scholar 

  48. M. Fleury, M. Romero-Sarmiento, J. Petrol. Sci. Eng. 137, 55 (2016)

    Google Scholar 

  49. J. Mitchell, E. Fordham, Rev. Sci. Instrum. 85, 111502 (2014)

    ADS  Google Scholar 

  50. A. Valori, J. Mitchell, E. Fordham, Concept. Magn. Reson. 46B, 202 (2017)

    Google Scholar 

  51. M. Hürlimann, K. Helmer, T. de Swiet, P. Sen, C. Sotak, J. Magn. Reson. Ser. A 113, 260 (1995)

    ADS  Google Scholar 

  52. J. Mitchell, J. Staniland, E. Fordham, Petrophysics 54, 349 (2013)

    Google Scholar 

Download references

Acknowledgements

Kaspars Karlsons is thanked for measuring the absolute magnetic susceptibility of the rock powders and core plugs. Mauro Caresta (Schlumberger Cambridge Research) organized collection of cuttings from the Cameron Test Facility. Edmund Fordham (Schlumberger Cambridge Research) is thanked for discussions on magnetic susceptibility units and measurements. Schlumberger is thanked for supporting this work.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, J. Monitoring Lithology Variations in Drilled Rock Formations Using NMR Apparent Magnetic Susceptibility Contrast. Appl Magn Reson 51, 205–219 (2020). https://doi.org/10.1007/s00723-019-01157-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01157-1

Navigation