Skip to main content
Log in

Synthesis and Luminescent Properties of Gadolinium Tantalum Niobates Gd(NbxTa1 – x)O4

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The feasibility of synthesizing gadolinium tantalum niobates by the liquid-phase method was demonstrated. The methods of X-ray diffraction, electron probe microanalysis, local cathodoluminescence, and photoluminescence were applied to study the samples. It was shown that under the selected synthesis conditions (T ~ 1400°C for 3 hours), no solid solution of niobium-tantalum was formed in the powder samples. When obtaining ceramic samples, it was possible to obtain a solid solution and to study the dependence of the luminescence intensity on the niobium content upon excitation of the samples by an electron beam. The maximum luminescence intensity was observed in the sample with the composition of GdNb0.9Ta0.1O4. It was shown that the inhomogeneity of luminescence is not related to fluctuations in composition, but is related to the inhomogeneous distribution of vacancy centers, which are luminescence centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Nikl, Meas. Sci. Technol. 17, R37 (2006).

    Article  ADS  Google Scholar 

  2. T. Yanagida, Proc. Jpn. Acad. B 94, 75 (2018).

    Article  Google Scholar 

  3. S. Tavernier, A. Gektin, B. Grinyov, and W. W. Moses, Radiation Detectors for Medical Applications (Springer Science, New York, 2006).

    Book  Google Scholar 

  4. M. Globus, B. Grinov, and J. K. Kim, Inorganic Scintillators for Modern and Traditional Applications (Inst. Monokristallov, Kharkov, 2005), p. 583 [in Ukrainian].

    Google Scholar 

  5. M. Nikl and A. Yoshikawa, Adv. Opt. Mater. 3, 463 (2015).

    Article  Google Scholar 

  6. P. Dorenbos, Nucl. Instrum. Methods Phys. Res., Sect. A 486, 208 (2002).

    Google Scholar 

  7. C. R. Stanek, K. J. McClellan, M. R. Levy, and R. W. Grimes, J. Appl. Phys. 99, 113518 (2006).

    Article  ADS  Google Scholar 

  8. M. Nikl, A. Yoshikawa, A. Vedda, and T. Fukuda, J. Cryst. Growth 292, 416 (2006).

    Article  ADS  Google Scholar 

  9. M. V. Nazarov, D. Y. Jeon, J. H. Kang, E. Popovici, L. E. Muresan, M. V. Zamoryanskaya, and B. S. Tsukerblat, Solid State Commun. 131, 307 (2004).

    Article  ADS  Google Scholar 

  10. V. Vishwnath, M. Srinivas, N. Patel, D. Modi, and K. V. R. Murthy, AIP Conf. Proc. 1731, 110019 (2016).

    Article  Google Scholar 

  11. I. Arellano, M. Nazarov, C. C. Byeon, E.-J. Popovici, H. Kim, H. C. Kang, and D. Y. Noh, Mater. Chem. Phys. 119, 48 (2010).

    Article  Google Scholar 

  12. X. Wang, X. Li, H. Zhong, S. Xu, L. Cheng, J. Sun, J. Zhang, L. Li, and B. Chen, Sci. Rep. 8, 5736 (2018).

    Article  ADS  Google Scholar 

  13. Y. Lü, C. Chen, S. Li, X. Liu, L. Yan, Y. Dai, A. Zhang, Y. Xie, and X. Tang, Eur. J. Inorg. Chem. 31, 5262 (2015).

    Article  Google Scholar 

  14. X. Liu, Y. Lü, C. Chen, S. Luo, Y. Zeng, X. Zhang, M. Shang, C. Li, and J. Lin, J. Phys. Chem. C 118, 27516 (2014).

    Article  Google Scholar 

  15. O. Voloshyna, I. Boiaryntseva, D. Spassky, and O. Sidletskiy, Solid State Phenom. 230, 172 (2015).

    Article  Google Scholar 

  16. O. Voloshyna, O. Sidletskiy, D. Spassky, I. Gerasymov, I. Romet, and A. Belsky, Opt. Mater. 76, 382 (2018).

    Article  ADS  Google Scholar 

  17. S. M. Masloboeva, G. N. Duboshin, and L. G. Arutyunyan, Vestn. Mosk. Tekh. Univ. 12, 279 (2009).

    Google Scholar 

  18. M. V. Zamoryanskaya, S. G. Konnikov, and A. N. Zamoryanskii, Instrum. Exp. Tech. 47, 477 (2004).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

XRD and structural studies were performed using the equipment of the Joint Research Center “Material science and characterization in advanced technology.” Authors are also grateful to the Center for the Collective Use of Physical Methods of Investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kravets.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, E.V., Masloboeva, S.M., Kravets, V.A. et al. Synthesis and Luminescent Properties of Gadolinium Tantalum Niobates Gd(NbxTa1 – x)O4. Opt. Spectrosc. 127, 1011–1017 (2019). https://doi.org/10.1134/S0030400X19120348

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19120348

Keywords:

Navigation