Skip to main content
Log in

The Use of IR Spectroscopy and Density Functional Theory for Estimating the Relative Concentration of Triglycerides of Oleic and Linoleic Acids in a Mixture of Olive and Sunflower Seed Oils

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Infrared spectra of five samples of sunflower seed oil and five samples of cold-pressed olive oil of different brands are recorded in the range of 650–3800 сm–1. The structural models of eight fatty acids (oleic, linoleic, palmitic, stearic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic), as well as of triglycerides of the first four of these acids, are constructed using B3LYP/6-31G(d) methods. The vibrational wavenumbers and intensities in the IR spectra are calculated. The IR spectra of olive and sunflower seed oils are simulated using the supermolecular approach. The dependence of the intensity of vibrational bands at νexp = 914 and 3009 сm–1 on the concentration of triglycerides of oleic and linoleic acids in oils, as well as on the saturation degree of fatty acids, are studied. Experimental and empirical dependences are plotted to estimate the relative concentrations of triglycerides of oleic and linoleic acids in mixtures of olive and sunflower seed oils. The applicability of the density functional theory in combination with IR spectroscopy for characterization of vegetable oils is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Cozzolino, Appl. Spectrosc. Rev. 47, 518 (2012). https://doi.org/10.1080/05704928.2012.667858

    Article  ADS  Google Scholar 

  2. M. D. Guillen and N. Cabo, J. Agric. Food Chem. 47, 709 (1999). https://doi.org/10.1021/jf9808123

    Article  Google Scholar 

  3. M. D. Guillen and N. Cabo, J. Sci. Food Agric. 80, 2028 (2000). https://doi.org/10.1002/1097-0010(200011)80:14<2028::AID-JSFA713>3.0.CO;2-4

    Article  Google Scholar 

  4. M. D. Guillen and N. Cabo, Food Chem. 77, 503 (2002). https://doi.org/10.1016/S0308-8146(01)00371-5

    Article  Google Scholar 

  5. D. Goburdhun, S. B. Jhaumeer-Laulloo, and R. Musruck, Int. J. Food Sci. 52, 31 (2001). https://doi.org/10.1080/09637480020027183

    Article  Google Scholar 

  6. T. Russin and F. R. van de Voort, J. Am. Oil Chem. Soc. 81, 111 (2004). https://doi.org/10.1007/s11744-004-0867-x

    Article  Google Scholar 

  7. B. F. Ozen, I. Weiss, and L. J. Mauer, J. Agric. Food Chem. 51, 5871 (2003). https://doi.org/10.1021/jf034245h

    Article  Google Scholar 

  8. Y. W. Lai, E. K. Kemsley, and R. H. Wilson, Food Chem. 53, 95 (1995). https://doi.org/10.1016/0308-8146(95)95793-6

    Article  Google Scholar 

  9. A. Tay, R. K. Singh, S. S. Krishnan, and J. P. Gore, Lebensm.-Wiss. u.-Technol. 35, 99 (2002). https://doi.org/10.1006/fstl.2001.0864

    Article  Google Scholar 

  10. B. F. Ozen and L. J. Mauer, J. Agric. Food Chem. 50, 3898 (2002). https://doi.org/10.1021/jf0201834

    Article  Google Scholar 

  11. K. V. Berezin, I. T. Shagautdinova, M. L. Chernavina, A. V. Novoselova, K. N. Dvoretskii, and A. M. Likhter, Opt. Spectrosc. 123, 495 (2017). https://doi.org/10.1134/S0030400X17090089

    Article  ADS  Google Scholar 

  12. Codex Alimentarius, Fats, Oils, and Derivatives (Ves’ Mir, Moscow, 2007) [in Russian].

  13. K. V. Berezin, K. N. Dvoretskii, M. L. Chernavina, A. V. Novoselova, V. V. Nechaev, E. M. Antonova, I. T. Shagautdinova, and A. M. Likhter, Opt. Spectrosc. 125, 311 (2018). https://doi.org/10.1134/S0030400X18090059

    Article  ADS  Google Scholar 

  14. https://roscontrol.com/category/produkti/rastitelnoe_maslo/.

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.02 (Gaussian Inc., Pittsburgh, PA, 2009).

    Google Scholar 

  16. A. B. Faifel’, K. V. Berezin, and V. V. Nechaev, in Problems of Optical Physics (Kolledzh, Saratov, 2003), p. 74 [in Russian].

    Google Scholar 

  17. K. V. Berezin, V. V. Nechaev, and T. V. Krivokhizhina, Opt. Spectrosc. 94, 357 (2003). https://doi.org/10.1134/1.1563679

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation in the framework of state orders to higher educational institutions and scientific organizations in the field of scientific activity, project no. 3.9128.2017/BCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Dvoretskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezin, K.V., Dvoretskii, K.N., Chernavina, M.L. et al. The Use of IR Spectroscopy and Density Functional Theory for Estimating the Relative Concentration of Triglycerides of Oleic and Linoleic Acids in a Mixture of Olive and Sunflower Seed Oils. Opt. Spectrosc. 127, 955–961 (2019). https://doi.org/10.1134/S0030400X1912004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1912004X

Keywords:

Navigation