Skip to main content
Log in

A Spectroscopic Study of Changes in the Secondary Structure of Proteins of Biological Fluids of the Oral Cavity by Synchrotron Infrared Microscopy

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

On the basis of the data of infrared spectroscopy with synchrotron radiation, the secondary structure of proteins of the dentinal and gingival fluids during the development of cariosity in deep dentin tissues is studied. It is shown that the change in the shape of the profile of the amide I band in the region of 1700‒1605 cm–1 is associated both with a change in the ratio of the integrated absorption intensities of the α‑helix and β-sheet secondary structures and with the position of the β-coil and β-sheet components in the spectrum. It is established that the α-helix/β-sheet ratio for both dentinal and gingival fluids is below the threshold level, at which significant changes in the secondary structure of proteins of biological fluids are observed, unequivocally indicating the development of pathology in hard dental tissues. The features that we discovered in the profile of the amide I band of biological fluids of the oral cavity, together with the spectral markers of the development of cariosity in dentin, are reliable spectroscopic signatures of the pathology and can be detected using the gingival fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. Liu, X. Yao, Y. W. Liu, and Y. Wang, Caries Res. 48, 320 (2014). https://doi.org/10.1159/000356868

    Article  Google Scholar 

  2. A. C. Ribeiro Figueiredo, C. Kurachi, and V. S. Bagnato, Caries Res. 39, 393 (2005). https://doi.org/10.1159/000086846

    Article  Google Scholar 

  3. A. Almahdy, F. C. Downey, S. Sauro, R. J. Cook, M. Sherriff, D. Richards, T. F. Watson, A. Banerjee, and F. Festy, Caries Res. 46, 432 (2012). https://doi.org/10.1159/000339487

    Article  Google Scholar 

  4. I. N. Rôças, F. R. F. Alves, C. T. C. C. Rachid, K. C. Lima, I. V. Assunção, P. N. Gomes, and J. F. Siqueira, PLoS One 11 (5) (2016). https://doi.org/10.1371/journal.pone.0154653

  5. A. C. Tanner, C. Kressirer, L. Faller, K. Lake, F. Dewhirst, A. Kokarasb, B. Paster, and J. Frias-Lopez, J. Oral Microbiol. 9 (Suppl. 1), 1325194 (2017). https://doi.org/10.1080/20002297.2017.1325194

    Article  Google Scholar 

  6. A. Slimani, F. Nouioua, I. Panayotov, N. Giraudeau, K. Chiaki, Y. Shinji, T. Cloitre, B. Levallois, C. Gergely, F. Cuisinier, and H. Tassery, Int. J. Exp. Dental Sci. 5, 1 (2016). https://doi.org/10.5005/jp-journals-10029-1115

    Article  Google Scholar 

  7. H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, H. Tassery, and F. Cuisinier, J. Biophoton. 6, 1 (2012). https://doi.org/10.1002/jbio.201200095

  8. P. Seredin, D. Goloshchapov, T. Prutskij, and Y. Ippolitov, PLoS One 10, 1 (2015). https://doi.org/10.1371/journal.pone.0124008

    Article  Google Scholar 

  9. P. V. Seredin, D. L. Goloshchapov, T. Prutskij, and Yu. A. Ippolitov, Opt. Spectrosc. 125, 803 (2018). https://doi.org/10.1134/S0030400X18110267

    Article  ADS  Google Scholar 

  10. Q. G. Chen, H. H. Zhu, Y. Xu, B. Lin, and H. Chen, Laser Phys. 25, 085601 (2015). https://doi.org/10.1088/1054-660X/25/8/085601

    Article  ADS  Google Scholar 

  11. R. M. Love and H. F. Jenkinson, Crit. Rev. Oral Biol. Med. 13, 171 (2002). https://doi.org/10.1177/154411130201300207

    Article  Google Scholar 

  12. S. Geraldeli, Y. Li, M. M. B. Hogan, L. S. Tjaderhane, D. H. Pashley, T. A. Morgan, M. B. Zimmerman, and K. A. Brogden, Arch. Oral Biol. 57, 264 (2012). https://doi.org/10.1016/j.archoralbio.2011.08.012

    Article  Google Scholar 

  13. S. P. Barros, R. Williams, S. Offenbacher, and T. Morelli, Periodontol. 2000 70, 53 (2016). https://doi.org/10.1111/prd.12107

    Article  Google Scholar 

  14. X. Gao, S. Jiang, D. Koh, and C.-Y. S. Hsu, Periodontol. 2000 70, 128 (2016). https://doi.org/10.1111/prd.12100

    Article  Google Scholar 

  15. X. M. Xiang, K. Z. Liu, A. Man, E. Ghiabi, A. Cholakis, and D. A. Scott, J. Periodont. Res. 45, 345 (2010). https://doi.org/10.1111/j.1600-0765.2009.01243.x

    Article  Google Scholar 

  16. G. Gupta, J. Med Life 6, 7 (2013). PMID: 23599812

    Google Scholar 

  17. L. G. Carneiro, H. Nouh, and E. Salih, J. Clin. Periodontol. 41, 733 (2014). https://doi.org/10.1111/jcpe.12262

    Article  Google Scholar 

  18. R. A. Shaw and H. H. Mantsch, in Encyclopedia of Analytical Chemistry, Ed. by A. Meyers (Wiley, Chichester, 2006), p. 20.

    Google Scholar 

  19. X. Xiang, P. M. Duarte, J. A. Lima, V. R. Santos, T. D. Gonçalves, T. S. Miranda, and K.-Z. Liu, J. Periodontology 84, 1792 (2013). https://doi.org/10.1902/jop.2013.120665

    Article  Google Scholar 

  20. O. G. Avraamova, Y. A. Ippolitov, Y. A. Plotnikova, P. V. Seredin, D. V. Goloshapov, and E. O. Aloshina, Stomatologiia (Mosk). 96, 6 (2017). PMID: 28514339

    Google Scholar 

  21. P. Seredin, D. Goloshchapov, V. Kashkarov, Y. Ippolitov, and K. Bambery, Results Phys. 6, 315 (2016). https://doi.org/10.1016/j.rinp.2016.06.005

    Article  ADS  Google Scholar 

  22. J. Titus, H. Ghimire, E. Viennois, D. Merlin, and A. G. U. Perera, J. Biophotonics 11, e201700057 (2018). https://doi.org/10.1002/jbio.201700057

    Article  Google Scholar 

  23. M. Baldassarre, C. Li, N. Eremina, E. Goormaghtigh, and A. Barth, Molecules 20, 12599 (2015). https://doi.org/10.3390/molecules200712599

    Article  Google Scholar 

  24. C. Júnior, P. Cesar, J. F. Strixino, and L. Raniero, Res. Biomed. Eng. 31, 116 (2015). https://doi.org/10.1590/2446-4740.0664

    Article  Google Scholar 

  25. S. Elangovan, H. C. Margolis, F. G. Oppenheim, and E. Beniash, Langmuir 23, 11200 (2007). https://doi.org/10.1021/la7013978

    Article  Google Scholar 

  26. S. Fujii, S. Sato, K. Fukuda, T. Okinaga, W. Ariyoshi, M. Usui, K. Nakashima, T. Nishihara, and S. Takenaka, Anal Sci. 32, 225 (2016). https://doi.org/10.2116/analsci.32.225

    Article  Google Scholar 

  27. P. Seredin, D. Goloshchapov, Y. Ippolitov, and P. Vongsvivut, EPMA J. 9, 195 (2018). https://doi.org/10.1007/s13167-018-0135-9

    Article  Google Scholar 

  28. J. Vongsvivut, D. Pérez-Guaita, B. R. Wood, P. Heraud, K. Khambatta, D. Hartnell, M. J. Hackett, and M. J. Tobin, Analyst (2019). https://doi.org/10.1039/c8an01543k

  29. T. Makhnii, O. Ilchenko, A. Reynt, Y. Pilgun, A. Kutsyk, D. Krasnenkov, M. Ivasyuk, and V. Kukharskyy, Ukr. J. Phys. 61, 853 (2016). https://doi.org/10.15407/ujpe61.10.0853

    Article  Google Scholar 

  30. J. Lopes, M. Correia, I. Martins, A. G. Henriques, I. Delgadillo, O. da Cruz e Silva, and A. Nunes, J. Alzheimer’s Disease 52, 801 (2016). https://doi.org/10.3233/JAD-151163

    Article  Google Scholar 

  31. C.-M. Orphanou, Forensic Sci. Int. 252, e10 (2015). https://doi.org/10.1016/j.forsciint.2015.04.020

    Article  Google Scholar 

  32. C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, Methods Cell Biol. 89, 275 (2008). https://doi.org/10.1016/S0091-679X(08)00610-9

    Article  Google Scholar 

  33. I. Badea, M. Crisan, F. Fetea, and C. Socaciu, Roman. Biotechnol. Lett. 19, 9817 (2014).

    Google Scholar 

  34. J. Workman and L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy, 2nd ed. (CRC, Boca Raton, FL, 2012).

    Book  Google Scholar 

  35. A. Barth, Biochim. Biophys. Acta Bioenerg. 1767, 1073 (2007). https://doi.org/10.1016/j.bbabio.2007.06.004

  36. K. M. Elkins, J. Forensic Sci. 56, 1580 (2011). https://doi.org/10.1111/j.1556-4029.2011.01870.x

    Article  Google Scholar 

  37. P. V. Seredin, D. L. Goloshchapov, Y. A. Ippolitov, and E. S. Kalivradzhiyan, Russ. Open Med. J. 7, e0106 (2018). https://doi.org/10.15275/rusomj.2018.0106

    Article  Google Scholar 

  38. J. Kong and S. Yu, Acta Biochim. Biophys. Sin. (Shanghai) 39, 549 (2007). PMID: 17687489

    Article  Google Scholar 

  39. G. Hoffner, W. André, C. Sandt, and P. Djian, Rev. Anal. Chem. 33 (4) (2014). https://doi.org/10.1515/revac-2014-0016

  40. D. P. Guaita, J. Ventura-Gayete, C. P. Rambla, M. S. Andreu, de la M. Guardia, and S. G. Mateo, Anal. Bioanal. Chem. 404, 649 (2012). https://doi.org/10.1007/s00216-012-6030-7N

    Article  Google Scholar 

  41. B. H. Stuart, Infrared Spectroscopy of Biological Applications, Encyclopedia of Analytical Chemistry (American Cancer Society, 2006), p. 31.

    Google Scholar 

  42. H. A. Tajmir-Riahi, C. N. N’soukpoé-Kossi, and D. Joly, Spectroscopy 23, 81 (2009). https://doi.org/10.3233/SPE-2009-0371

    Article  Google Scholar 

  43. H. Yang, S. Yang, J. Kong, A. Dong, and S. Yu, Nat. Protocols 10, 382 (2015). https://doi.org/10.1038/nprot.2015.024

    Article  Google Scholar 

  44. Y.-T. Huang, H.-F. Liao, S.-L. Wang, and S.-Y. Lin, AIMS Biophys. 3, 247 (2016). https://doi.org/10.3934/biophy.2016.2.247

    Article  Google Scholar 

  45. J. Depciuch, Sowa-M. Kućma, G. Nowak, D. Dudek, M. Siwek, K. Styczeń, and M. Parlińska-Wojtan, J. Pharmaceut. Biomed. Anal. 131, 287 (2016). https://doi.org/10.1016/j.jpba.2016.08.037

    Article  Google Scholar 

  46. C. Petibois, K. Gionnet, M. Gonçalves, A. Perromat, M. Moenner, and G. Déléris, Analyst 131, 640 (2006). https://doi.org/10.1039/B518076G

    Article  ADS  Google Scholar 

  47. H. Guo, F. Huang, Y. Li, T. Fang, S. Zhu, and Z. Chen, Anal. Lett. 49, 2964 (2016). https://doi.org/10.1080/00032719.2016.1166507

    Article  Google Scholar 

  48. R. de Cássia Fernandes Borges, R. S. Navarro, H. E. Giana, F. G. Tavares, A. B. Fernandes, and L. Silveira, Jr., Res. Biomed. Eng. 31, 160 (2015). https://doi.org/10.1590/2446-4740.0593

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was partially performed using the infrared microspectroscopy (IRM) beamline at the Australian Synchrotron.

Funding

This study was supported by a grant from the Russian Science Foundation, project no. 16-15-00003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Seredin.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in this study with human participation comply with the ethical standards of the 1964 Helsinki Declaration and its subsequent amendments or with comparable ethical standards. Informed voluntary consent was received from each participant included in the study.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seredin, P.V., Goloshchapov, D.L., Ippolitov, Y.A. et al. A Spectroscopic Study of Changes in the Secondary Structure of Proteins of Biological Fluids of the Oral Cavity by Synchrotron Infrared Microscopy. Opt. Spectrosc. 127, 1002–1010 (2019). https://doi.org/10.1134/S0030400X19120221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19120221

Keywords:

Navigation