Skip to main content
Log in

Optical Properties of Spherical Metal Nanoparticles Coated with an Oxide Layer

  • PLASMONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The optical properties of an ensemble of metal nanoparticles coated with an oxide layer have been investigated within framework of the classical theory. The influence of the electron-scattering mechanisms on the polarizability of nanoparticles is analyzed. The limiting case of a thin oxide layer is considered, and analytical expressions for the real and imaginary parts of the polarizability are derived. The evolution of the frequency dependences of the polarizability and extinction coefficient upon variation in the particle size and oxide-layer thickness is investigated. It is shown that the consideration of the size dependence of the surface component of the relaxation time changes the character of the size dependence of the frequency of surface plasmons of two-layer nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. V. Kulish and P. M. Tomchuk, Surf. Sci. 602, 1045 (2008). https://doi.org/10.1016/j.susc.2007.12.030

    Article  ADS  Google Scholar 

  2. J. M. J. Santillán, L. B. Scaffardi, and D. C. Schinca, J. Phys. D: Appl. Phys. 44, 105104 (2011). https://doi.org/10.1088/0022-3727/44/10/105104

    Article  ADS  Google Scholar 

  3. P. Chakraborty, J. Mater. Sci. 33, 2235 (1998). https://doi.org/10.1023/A:1004306501659

    Article  ADS  Google Scholar 

  4. H.-Y. Xia, Ch.-X. Teng, X.-W. Zhao, and J. Zheng, Chin. Phys. Lett. 29, 084215 (2012). https://doi.org/10.1088/0256-307X/29/8/084215

    Article  ADS  Google Scholar 

  5. D. A. Zuev, S. V. Makarov, I. S. Mukhin, S. V. Starikov, I. A. Morozov, I. I. Shishkin, A. E. Krasnok, and P. A. Belov, arXiv:1601.02013 (2016).

  6. L. G. Astafyeva, G. A. Zalesskaya, and V. Yu. Plavskii, Opt. Spectrosc. 112, 642 (2012). https://doi.org/10.1134/S0030400X12040030

    Article  ADS  Google Scholar 

  7. R. Narayanan, C. Tabor, and M. A. El-Sayed, Top. Catal. 48, 60 (2008).

    Article  Google Scholar 

  8. R. D’Agata, P. Palladino, and G. Spoto, Beilstein J. Nanotechnol. 8, 1 (2017). https://doi.org/10.3762/bjnano.8.1

    Article  Google Scholar 

  9. Z. Liu, S. Y. Lee, and E.-Ch. Lee, Appl. Phys. Lett. 105, 223306 (2014). https://doi.org/10.1063/1.4903749

    Article  ADS  Google Scholar 

  10. V. K. Pustovalov, L. G. Astafyeva, and W. Fritzsche, Sol. Energy 122, 1334 (2015).

    Article  ADS  Google Scholar 

  11. Ch. Liu, D. Zhang, Y. Liu, D. Wu, L. Chen, R. Ma, Z. Yu, L. Yu, and H. Ye, Nanosc. Res. Lett. 12, 601 (2017). https://doi.org/10.1186/s11671-017-2363-7

    Article  ADS  Google Scholar 

  12. V. Mlinar, Nanotechnology 24, 042001 (2013). https://doi.org/10.1088/0957-4484/24/4/042001

    Article  ADS  Google Scholar 

  13. J. M. J. Santillán, F. A. Videla, M. B. Fernández van Raap, D. C. Schinca, and L. B. Scaffardi, J. Appl. Phys. 113, 134305 (2013). https://doi.org/10.1063/1.4798387

    Article  ADS  Google Scholar 

  14. L. G. Astafyeva and V. K. Pustovalov, Opt. Spectrosc. 121, 109 (2016). https://doi.org/10.1134/S0030400X16070043

    Article  ADS  Google Scholar 

  15. L. G. Astaf’eva, V. K. Pustovalov, and V. Fritche, Opt. Spectrosc. 126, 294 (2019).

    Article  ADS  Google Scholar 

  16. S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, Chem. Phys. Lett. 356, 403 (2002). https://doi.org/10.1016/S0009-2614(02)00396-2

    Article  ADS  Google Scholar 

  17. N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005). https://doi.org/10.1021/cr030067f

    Article  Google Scholar 

  18. R. C. Monreal, S. P. Apell, and T. J. Antosiewicz, Opt. Express 22, 24994 (2014). https://doi.org/10.1364/OE.22.024994

    Article  ADS  Google Scholar 

  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008).

    Google Scholar 

  20. V. R. Tapia, A. Franco, and J. G. Macedo, J. Nanopart. Res. 14, 915 (2012). https://doi.org/10.1007/s11051-012-0915-4

    Article  Google Scholar 

  21. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Book  Google Scholar 

  22. N. I. Grigorchuk and P. M. Tomchuk, Phys. Rev. B 84, 085448 (2011). https://doi.org/10.1103/PhysRevB.84.085448

    Article  ADS  Google Scholar 

  23. N. W. Ashkroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, Philadelphia, 1976), Vol. 1.

    Google Scholar 

  24. I. I. Shaganov, T. S. Perova, and K. Berwick, Photon. Nanostruct. Fundam. Appl. 27, 24 (2017).

    Article  ADS  Google Scholar 

  25. W. A. Harrison, Solid State Theory (McGraw-Hill, New York, 1970; Mir, Moscow, 1970).

  26. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  27. J. Zhu, J.-J. Li, and J.-W. Zhao, Appl. Surf. Sci. 314, 145 (2014). https://doi.org/10.1016/j.apsusc.2014.06.129

    Article  ADS  Google Scholar 

  28. W. Y. Ching and Y.-N. Xu, Phys. Rev. B 40, 7684 (1989). https://doi.org/10.1103/PhysRevB.40.7684

    Article  ADS  Google Scholar 

  29. K. D. Cummings, J. C. Garland, and D. B. Tanner, Phys. Rev. B 30, 4170 (1984). https://doi.org/10.1103/PhysRevB.30.4170

    Article  ADS  Google Scholar 

  30. E. M. Voronkova et al., Optical Materials for Infrared Technology, Reference Book (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Korotun.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

APPENDIX. FORMULAS FOR THE REAL AND IMAGINARY PARTS OF POLARIZABILITY

APPENDIX. FORMULAS FOR THE REAL AND IMAGINARY PARTS OF POLARIZABILITY

Let us derive expressions for \({{\Xi }^{{ - 1}}}\) and \(\Lambda \) in the first order of smallness with respect to parameter q:

$$\Xi = [2\epsilon _{{{\text{oxide}}}}^{2} + {{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{1}} + 2{{\epsilon }_{1}}{{\epsilon }_{m}} + 4{{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{m}}$$
$$ - \;(2\epsilon _{{{\text{oxide}}}}^{2} + 2{{\epsilon }_{1}}{{\epsilon }_{m}} + 2{{\epsilon }_{1}}{{\epsilon }_{{{\text{oxide}}}}} - 2{{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{m}})$$
$$ \times \;(1 - 3q){{]}^{2}} + \epsilon _{2}^{2}{{[{{\epsilon }_{{{\text{oxide}}}}} + 2{{\epsilon }_{m}} + 2({{\epsilon }_{{{\text{oxide}}}}} - {{\epsilon }_{m}})(1 - 3q)]}^{2}}$$
$$ = 9\{ {{[\epsilon _{{{\text{oxide}}}}^{{}}({{\epsilon }_{1}} + 2{{\epsilon }_{m}}) + 2q(\epsilon _{{{\text{oxide}}}}^{{}} - {{\epsilon }_{m}})(\epsilon _{{{\text{oxide}}}}^{{}} - {{\epsilon }_{1}})]}^{2}}$$
$$ + \;\epsilon _{2}^{2}{{[{{\epsilon }_{{{\text{oxide}}}}} - 2q({{\epsilon }_{{{\text{oxide}}}}} - {{\epsilon }_{m}})]}^{2}}\} $$
$$ = 9\epsilon _{{{\text{oxide}}}}^{2}(\epsilon _{2}^{2} + {{({{\epsilon }_{1}} + 2{{\epsilon }_{m}})}^{2}})$$
$$ \times \;\left\{ {1 + 4q\frac{{({{\epsilon }_{{{\text{oxide}}}}} - {{\epsilon }_{m}})({{\epsilon }_{1}} + 2{{\epsilon }_{m}})({{\epsilon }_{{{\text{oxide}}}}} - {{\epsilon }_{1}}) - \epsilon _{2}^{2})}}{{{{\epsilon }_{{{\text{oxide}}}}}(\epsilon _{{{\text{oxide}}}}^{2} + {{{({{\epsilon }_{1}} + 2{{\epsilon }_{m}})}}^{2}})}}} \right\}.$$

Then,

$$\begin{gathered} {{\Xi }^{{ - 1}}} = \frac{1}{{9\epsilon _{{{\text{oxide}}}}^{2}(\epsilon _{2}^{2} + {{{({{\epsilon }_{1}} + 2{{\epsilon }_{m}})}}^{2}})}} \\ \times \;\left\{ {1 - 4q\frac{{({{\epsilon }_{{{\text{oxide}}}}} - {{\epsilon }_{m}})[({{\epsilon }_{1}} + 2{{\epsilon }_{m}})({{\epsilon }_{{{\text{oxide}}}}} - {{\epsilon }_{1}}) - \epsilon _{2}^{2}]}}{{{{\epsilon }_{{{\text{oxide}}}}}(\epsilon _{2}^{2} + {{{({{\epsilon }_{1}} + 2{{\epsilon }_{m}})}}^{2}})}}} \right\}. \\ \end{gathered} $$
(A.1)

Similarly,

$$\operatorname{Re} \Lambda = 3{{\epsilon }_{{{\text{oxide}}}}}(3{{\epsilon }_{{{\text{oxide}}}}} + {{\epsilon }_{m}})\epsilon _{2}^{2} + 9\epsilon _{{{\text{oxide}}}}^{2}\epsilon _{1}^{2} - 18\epsilon _{{{\text{oxide}}}}^{2}\epsilon _{m}^{2}$$
$$ - \;4\epsilon _{{{\text{oxide}}}}^{3}{{\epsilon }_{m}} + 2{{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{m}}\epsilon _{1}^{2} + 11\epsilon _{{{\text{oxide}}}}^{2}{{\epsilon }_{m}}{{\epsilon }_{1}}$$
$$ - \;3q[2\epsilon _{2}^{2}(6\epsilon _{{{\text{oxide}}}}^{2} - \epsilon _{m}^{2} + {{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{m}}) - 16\epsilon _{{{\text{oxide}}}}^{2}\epsilon _{m}^{2}$$
$$ + \;12\epsilon _{{{\text{oxide}}}}^{2}\epsilon _{1}^{2} - 12\epsilon _{{{\text{oxide}}}}^{3}{{\epsilon }_{m}} - 2\epsilon _{{{\text{oxide}}}}^{3}{{\epsilon }_{m}} - {{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{m}}\epsilon _{1}^{2}$$
$$ + \;11\epsilon _{{{\text{oxide}}}}^{2}{{\epsilon }_{m}}{{\epsilon }_{1}} + 12{{\epsilon }_{{{\text{oxide}}}}}\epsilon _{m}^{2}{{\epsilon }_{1}}] = (3{{\epsilon }_{{{\text{oxide}}}}}(3{{\epsilon }_{{{\text{oxide}}}}} + {{\epsilon }_{m}})\epsilon _{2}^{2}$$
$$ + \;9\epsilon _{{{\text{oxide}}}}^{2}\epsilon _{1}^{2} - 18\epsilon _{{{\text{oxide}}}}^{2}\epsilon _{m}^{2} - 4\epsilon _{{{\text{oxide}}}}^{3}{{\epsilon }_{m}} + 2{{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{m}}\epsilon _{1}^{2}$$
(A.2)
$$ + \;11\epsilon _{{{\text{oxide}}}}^{2}{{\epsilon }_{m}}{{\epsilon }_{1}})\{ 1 - 3q[2\epsilon _{2}^{2}(6\epsilon _{{{\text{oxide}}}}^{2} - \epsilon _{m}^{2} + {{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{m}})$$
$$ - \;16\epsilon _{{{\text{oxide}}}}^{2}\epsilon _{m}^{2} + 12\epsilon _{{{\text{oxide}}}}^{3}{{\epsilon }_{1}} - 2\epsilon _{{{\text{oxide}}}}^{3}{{\epsilon }_{m}} - {{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{m}}\epsilon _{1}^{2}$$
$$ + \;11\epsilon _{{{\text{oxide}}}}^{2}{{\epsilon }_{m}}{{\epsilon }_{1}} + 12{{\epsilon }_{{{\text{oxide}}}}}\epsilon _{m}^{2}{{\epsilon }_{1}}][3{{\epsilon }_{{{\text{oxide}}}}}(3{{\epsilon }_{{{\text{oxide}}}}} + {{\epsilon }_{m}})\epsilon _{2}^{2}$$
$$ + \;9\epsilon _{{{\text{oxide}}}}^{2}\epsilon _{1}^{2} - 18\epsilon _{{{\text{oxide}}}}^{2}\epsilon _{m}^{2} - 4\epsilon _{{{\text{oxide}}}}^{3}{{\epsilon }_{m}} + 2{{\epsilon }_{{{\text{oxide}}}}}{{\epsilon }_{m}}\epsilon _{1}^{2}$$
$$ + \;11\epsilon _{{{\text{oxide}}}}^{2}{{\epsilon }_{m}}{{\epsilon }_{1}}{{]}^{{ - 1}}}\} ;$$
$$\operatorname{Im} \Lambda = 27{{\epsilon }_{m}}\epsilon _{{{\text{oxide}}}}^{2}{{\epsilon }_{2}}(1 - 3q).$$
(A.3)

Substituting (A.1)–(A.3) into (3), we obtain formulas (7) and (8) for the real and imaginary parts of the polarizability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotun, A.V., Koval’, A.A. Optical Properties of Spherical Metal Nanoparticles Coated with an Oxide Layer. Opt. Spectrosc. 127, 1161–1168 (2019). https://doi.org/10.1134/S0030400X19120117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19120117

Keywords:

Navigation