Skip to main content
Log in

Electro-Optical Detection of Phage Antibody Interaction with Complementary Antigens of Herbaspirillum seropedicae Z78 Cells

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Complementary interactions in the antigen–antibody system have been assessed for the first time via electrooptical analysis with phage antibodies to the main antigens of the Herbaspirillum seropedicae Z78. It is shown that an electrooptical analyzer makes it possible to distinguish the presence or absence of specific interactions of phage antibodies with the main epitopes of a bacterial surface. The revealed relationships in the electrophysical parameters are in good agreement with the component composition of Herbaspirillum antigens and their topographic distribution, and they were also confirmed with electron microscopy and dot-analysis. It is shown that electrooptical analysis can be used to detect Herbaspirillum spp. with exposed antigens on its surface. The results can serve as a basis for the development of an express test for the rapid identification of these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Baldani, J.I., Baldani, V.L.D., Seldin, L., and Dobereiner, J., Int. J. Syst. Bacteriol., 1986, vol. 36, no. 1, pp. 86–93.

    Article  CAS  Google Scholar 

  2. Falk, E.C., Johnson, J.L., Baldani, V.L.D., Dobereiner, J., and Krieg, N.R., Int. J. Syst. Bacteriol., 1986, vol. 36, no. 1, pp. 80–85.

    Article  CAS  Google Scholar 

  3. Pedrosa, F.O., Benelli, E.M., Yates, M.G., Wassem, R., Monteiro, R.A., Klassen, G., Steffens, M.B., Souza, E.M., Chubatsu, L.S., and Rigo, L.U., J. Biotechnol., 2001, vol. 91, nos 1-2, pp. 189–195.

    Article  CAS  Google Scholar 

  4. Ding, L. and Yokota, A., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, no. 6, pp. P. 2223–2230.

  5. James, E.K. and Olivares, F.L., Crit. Rev. Plant Sci., 1997, vol. 17, no. 1, pp. P. 77–119.

  6. Boddey, R.M., de Oliveira, O.C., Urquiaga, S., Reis, V.M., Olivares, F.L., Baldani, V.L.D., and Dobereiner, J., Plant Soil, 1995, vol. 174, nos. 1–2, pp. 195–209.

    Article  CAS  Google Scholar 

  7. Rothballer, M., Schmid, M., Klein, I., Gattinger, A., Grudmann, S., and Hartmann, A., Int. J. Syst. Evol. Microbiol., 2006, vol. 56, no. 6, pp. 1341–1348.

    Article  CAS  Google Scholar 

  8. Baldani, J.I., Pot, B., Kirchhof, G., Falsen, E., Baldani, V.L., Olivares, F.L., Hoste, B., Kersters, K., Hartmann, A., Gillis, M., and Dobereiner, J., Int. J. Syst. Bacteriol., 1996, vol. 46, no. 3, pp. 802–810.

    Article  CAS  Google Scholar 

  9. Tan, M. and Oehler, R., Infect. Dis. Clin. Pract., 2005, vol. 13, no. 5, pp. 277–279.

    Article  Google Scholar 

  10. Coenye, T., Goris, J., Spilker, T., Vandamme, P., and LiPuma, J.J., J. Clin. Microbiol., 2002, vol. 40, no. 6, pp. 2062–2069.

    Article  Google Scholar 

  11. Spilker, T., Uluer, A.Z., Marty, F.M., Yeh, W.W., Levison, J.H., Vandamme, P., and Lipuma, J.J., J. Clin. Microbiol., 2008, vol. 46, no. 8, pp. 2774–2777.

    Article  Google Scholar 

  12. Chen, J., Su, Z., Liu, Y., Sandoghchian, S., Zheng, D., Wang, S., and Xu, H., Curr. Microbiol., 2011, vol. 62, no. 1, pp. 331–333.

    Article  CAS  Google Scholar 

  13. Ziga, E.D., Druley, T., and Burnham, C.A., J. Clin. Microbiol., 2010, vol. 48, no. 11, pp. 4320–4321.

    Article  Google Scholar 

  14. Dykman, L.A., Staroverov, S.A., Guliy, O.I., Ignatov, O.V., Fomin, A.S., Vidyasheva, I.V., Karavaeva, O.A., Bunin, V.D., Burygin, G.L., J. Immunoassay. Immunochem., 2012, vol. 33, no. 2, pp. 115–127.

  15. Guliy, O.I., Bunin, V.D., Korzhenevich, V.I., and Ignatov, O.V., Curr. Immun. Rev., 2017, vol. 13, no. 2, pp. 153–162.

    CAS  Google Scholar 

  16. Bunin, V.D. and Voloshin, A.G., Thin Solid Films, 1996, vol. 180, no. 1, pp. 122–126.

    CAS  Google Scholar 

  17. Miroshnikov, A.B., Fomchenkov, V.M., and Ivanov, A.Yu., Elektrofizicheskii analiz i razdelenie kletok (Electrophysical Analysis and Cell Separation), Moscow: Nauka, 1986.

  18. Bunin, V.D., Ignatov, O.V., Guliy, O.I., Voloshin, A.G., Dykman, L.A., O’Neil, D., and Ivnitski, D., Biosens. Bioelectron., 2004, vol. 19, no. 2, pp. 1759–1761.

    Article  CAS  Google Scholar 

  19. Guliy, O.I., Matora, L.Yu., Burygin, G.L., Dykman, L.A., Ostudin, N.A., Bunin, V.D., Ignatov, V.V., and Ignatov, O.V., Anal. Biochem., 2007, vol. 370, no. 2, pp. 201–205.

    Article  CAS  Google Scholar 

  20. Konnova, S.A., Makarov, O.E., Skvortsov, I.M., and Ignatov, V.V., FEMS Microbiol. Lett., 1994, vol. 118, no. 2, pp. 93–99.

    Article  CAS  Google Scholar 

  21. Smol'kina, O.N., Kachala, V.V., Fedonenko, Yu.P., Burygin, G.L., Zdorovenko, E.L., Matora, L.Yu., Konnova, S.A., and Ignatov, V.V., Biochemistry (Moscow), 2010, vol. 75, no. 5, pp. 606–613.

    CAS  PubMed  Google Scholar 

  22. Zdorovenko, G.M., Mikrobiol. Zh., 1988, vol. 50, no. 4, pp. 98–107.

    CAS  PubMed  Google Scholar 

  23. Ovodov, Yu.S., Biochemistry (Moscow), 2006, vol. 71, no. 9, pp. 955–961.

    CAS  PubMed  Google Scholar 

  24. Hols, O., Ulme, A.J., Brade, H., Fla, H-D., and Rietsche, E.T., FEMS Immunol. Med. Microbiol., 1996, vol. 16, no. 2, pp. 83–104.

    Article  Google Scholar 

  25. Mora, L. and Newton, W.E., in New Horizons in Nitrogen Fixation, Eckert, B., Ed., Dordrecht: Kluwer, 2008.

    Google Scholar 

  26. Saunder, N.J., Pede, J.F., Hoo, D.W., and Moxon, E.R., Mol. Microbiol., 1998, vol. 27, no. 6, pp. 1091–1098.

    Article  Google Scholar 

  27. Kannenberg, E.L. and Carlson, R.W., Mol. Microbial, 2001, vol. 39, no. 2, pp. 379–391.

    Article  CAS  Google Scholar 

  28. Molecular Biotechnology. Principles and Applications of Recombinant DNA, Glick, B.R. and Pasternak, J.J., Eds., Washington, DC: ASM Press, 1998.

    Google Scholar 

  29. Smith, G.P. and Petrenko, V.A., Chem. Rev., 1997, vol. 97, no. 2, pp. 391–410.

    Article  CAS  Google Scholar 

  30. McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J., Nature, 1990, vol. 348, no. 6301, pp. 552–554.

    Article  CAS  Google Scholar 

  31. Nanduri, V., Sorokulova, I.B., Samoylov, A.M., Simonian, A.L., Petrenko, V.A., and Vodyanoy, V., Biosens. Bioelectron., 2007, vol. 22, no. 6, pp. 986–992.

    Article  CAS  Google Scholar 

  32. Paoli, G.C., Chen, C.Y., and Brewster, J.D., Immunol. Methods, 2004, vol. 289, nos. 1–2, pp. 147–155.

    Article  CAS  Google Scholar 

  33. Smol’kina, O.N., Shishonkova (Velichko) N.S., Yurasov N.A., Ignatov V.V, Microbiology (Moscow), 2012, vol. 81, no. 3, pp. 317–323.

    Article  Google Scholar 

  34. Guliy, O.I., Zaitsev, B.D., Borodina, I.A., Teplykh, A.A., Staroverov, S.A., and Fomin, A.S., Talanta, 2018, vol. 178, pp. 569–576.

    Article  CAS  Google Scholar 

  35. Velichko, N.S., Surkina, A.K., Fedonenko, Yu.P., Zdorovenko, E.L., and Konnova, S.A., Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 635–641.

    Article  CAS  Google Scholar 

  36. Charlton, K.A., Moyle, S., Porter, A.J., and Harris, W.J., J. Immunol., 2000, vol. 164, nos 9-12, pp. 6221–6229.

    Article  CAS  Google Scholar 

  37. Griep, R.A., van Twisk, C., van Beckhoven, J.R., van der Wolf, J.M., and Schots, A., Phytopathology, 1998, vol. 88, no. 8, pp. 795–803.

    Article  CAS  Google Scholar 

  38. Smith, G.P. and Scott, J.K., Methods Enzymol., 1993, vol. 217, pp. 228–257.

    Article  CAS  Google Scholar 

  39. Beatty, J.D., Beatty, B.G., and Vlahos, W.G., J. Immunol. Methods, 1987, vol. 100, nos. 1–2, pp. 173–179.

    Article  CAS  Google Scholar 

  40. Jiang, C.H., Fan, Z.H., Xie, P., and Guo, J.H., Front. Microbiol., 2016, vol. 7, p. 664. https://doi.org/10.3389/fmicb.2016.00664

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maruzani, R., Sutton, G., Nocerino, P., and Marvasi, M., J. Microbiol., 2019, vol. 57, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  42. Serrato, R.V., Sassaki, G.L., Cruz, L.M., Carlson, R.W., Muszynski, A., Monteiro, R.A., Pedrosa, F.O., Souza, E.M., and Iacomini, M., Can. J. Microbiol., 2010, vol. 56, no. 4, pp. 342–347.

    Article  CAS  Google Scholar 

  43. Balsanelli, E., Tuleski, T.R., de Baura, V.A., Yates, M.G., Chubatsu, L.S., Pedrosa, FdeO., de Souza, E.M., and Monteiro, R.A., PLoS One, 2013, vol. 8, no. 10. e77001. https://doi.org/10.1371/journal.pone.0077001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Velichko, N.S. and Fedonenko, Yu.P., Ann. Microbiol., 2019, vol. 69, no. 11, pp. 1113–1121.https://doi.org/10.1007/s13213-019-01490-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Guliy.

Ethics declarations

The authors declare no conflict of interests. This article does not contain any work conducted on animal or human participants.

Additional information

Translated by A. Aver’yanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliy, O.I., Velichko, N.S., Fedonenko, Y.P. et al. Electro-Optical Detection of Phage Antibody Interaction with Complementary Antigens of Herbaspirillum seropedicae Z78 Cells. Appl Biochem Microbiol 56, 106–113 (2020). https://doi.org/10.1134/S000368382001007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382001007X

Keywords:

Navigation