Skip to main content
Log in

Photocatalytic Activity of Tio2 Nanostructures Formed by Sol–Gel Method in the Presence of Hydrofluoric Acid in the Transformation of Carbon Oxides

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The photocatalytic activity of TiO2 nanostructures in the reduction of CO2 to CH4 and oxidation of CO to CO2 was studied. It depends significantly on the concentration of hydrofluoric acid in the sol–gel system and on the conditions of post-synthesis treatment leading to the formation of oxygen vacancies. The conditions for production of samples giving maximum efficiency for these processes were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Ch. Zellweger, J. Mohn, S. A. Wyss, et al., EGU General Assembly: Geophysical Research Abstracts,19, 13826 (2017).

    Google Scholar 

  2. M. M. Halmann, Chemical Fixation of Carbon Dioxide: Methods for Recycling CO2into Useful Products,: CRC Press, Boca Raton, FL (1993).

    Google Scholar 

  3. N. Shehzad, M. Tahir, K. Johari, et al., J. CO2Utilization, 26, 98-122 (2018).

  4. Han X., Kuang Q., Jinet M. et al., J. Am. Chem. Soc., 131, No. 9, 3152-3153.

  5. W. Wang, C. Lu, Y. Ni, et al., CrystEngComm,15, 2537-2543 (2013).

    Article  CAS  Google Scholar 

  6. K. Chen, Z. Jiang, J. Qin, et al., Ceramics Int., 40, No. 10, 16817-16823 (2014).

    Article  CAS  Google Scholar 

  7. J. Yu, J. Fan, K. Lv, Nanoscale, 2, 2144-2149 (2010).

    Article  CAS  Google Scholar 

  8. L. Ren, Y. Li, J. Hou, et al., Appl. Catal. B, 181, 625-634 (2016).

    Article  CAS  Google Scholar 

  9. J. Yu, J. Low, W. Xiao, et al., J. Am. Chem. Soc., 136, No. 25, 8839-8842 (2014).

    Article  CAS  Google Scholar 

  10. Z. He, L. Wen, D. Wang, et al., Energy Fuels, 28, No. 6, 3982-3993 (2014).

    Article  CAS  Google Scholar 

  11. Y. Zhao, Y. Zhang, H. Liu, et al., Chem. Mater., 26, No. 2, 1014-1018 (2014).

    Article  CAS  Google Scholar 

  12. E. M. Samsudin, S. B. A. Hamid, J. C. Juan, et al., Appl. Surf. Sci., 370, 380-393 (2016).

    Article  CAS  Google Scholar 

  13. M. Pelaeza, N. Nolan, S. Pillai, et al., Appl. Catal. B, 125, 331-349 (2012).

    Article  Google Scholar 

  14. J. Zhang, B. Wu, L. Huang, et al., J. Alloys Compd., 661, 441-447 (2016).

    Article  CAS  Google Scholar 

  15. K. Lv, Q. Xiang, J. Yu, Appl. Catal. B., 104, Nos. 3/4, 275-281 (2011).

    Article  CAS  Google Scholar 

  16. D. Huang, S. Liao, S. Quan, et al., J. Mater. Res., 22, 2389-2397 (2007).

    Article  CAS  Google Scholar 

  17. A. Sadoc, M. Body, C. Legein, et al., Phys. Chem. Chem. Phys., 13, No. 41, 18539-18550 (2011).

    Article  CAS  Google Scholar 

  18. W. Li, M. Body, C. Legein, et al., Cryst. Growth Des., 16, No. 9, 5441-5447 (2016).

    Article  CAS  Google Scholar 

  19. N. Todorova, T. Giannakopoulou, G. Romanos, et al., Int. J. Photoenergy, 1-9 (2008).

  20. X. Yu, B. Kim, Y. K. Kim, ACS Catal., 3, No. 11. 2479-2486 (2013).

    Article  CAS  Google Scholar 

  21. M. Schiavello (Ed.), Photoelectrochemistry, Photocatalysis and Photoreactors: Fundamentals and Developments, Springer Science & Business Media (2013). (NATO ASI Series C, Vol. 146).

  22. M. L. Ovcharov, A. M. Mishura, V. V. Shvalagin, et al., Teor. Éksp. Khim., 55, No. 1, 4 26 (2019). [Theor. Exp. Chem., 55, No. 1, 2-28 (2019) (English translation).]

  23. F. Zuo, L. Wang, T. Wu, et al., J. Am. Chem. Soc., 132, No. 34, 11856-11857 (2010). 413

Download references

Acknowledgement

The authors express their gratitude to V. O. Golub (Institute of Magnetism, National Academy of Sciences of Ukraine) for assistance in the investigation of the samples by EPR and to V. I. Sapsai and S. N. Shcherbakov (M. G. Kholodnyi Institute of Botanics) for investigation of the samples by scanning and transmission spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Romanovska.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 55, No. 6, pp. 373-380, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanovska, N.I., Ovcharov, M.L., Mishura, A.M. et al. Photocatalytic Activity of Tio2 Nanostructures Formed by Sol–Gel Method in the Presence of Hydrofluoric Acid in the Transformation of Carbon Oxides. Theor Exp Chem 55, 407–413 (2020). https://doi.org/10.1007/s11237-020-09633-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09633-7

Keywords

Navigation