Skip to main content
Log in

A scale of atomic electronegativity in terms of atomic nucleophilicity index

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

Electronegativity (χ) is an important physico-chemical concept to study the chemical structure and reactivity. Although, the conundrum related to measurement of electronegativity still persists. In view of this fact, a simple yet rigorous scale of electronegativity (χ), invoking an inverse relationship with atomic nucleophilicity index (N), has been proposed for 103 elements of the periodic table. The computed data follows periodicity distinctly satisfying all the sine qua non of a standard scale of electronegativity. Further, electronegativity values display a sound similarity with the standard electronegativity scales validating the suitability of the proposed model. Molecular electronegativities of some polyatomic molecules have also been calculated using the proposed scale of electronegativity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Accorinti, H.L.: Incompatible models in chemistry: the case of electronegativity. Found. Chem. 21, 71–81 (2019)

    Google Scholar 

  • Allen, L.C.: Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J. Am. Chem. Soc. 111, 9003–9014 (1989)

    Google Scholar 

  • Allen, L.C., Knight, E.T.: Electronegativity: why has it been so difficult to define? J. Mol. Struct. Theochem. 261, 313–330 (1992)

    Google Scholar 

  • Allred, A.L., Rochow, E.G.: A scale of electronegativity based on electrostatic force. J. Inorg. Nuclear Chem. 5, 264–268 (1958)

    Google Scholar 

  • Boyd, R.J., Markus, G.E.: Electronegativities of the elements from a nonempirical electrostatic model. J. Chem. Phys. 75, 5385–5388 (1981)

    Google Scholar 

  • Campodónico, P.R., Aizman, A., Contreras, R.: Empirical scale of nucleophilicity for substituted pyridines. Chem. Phys. Lett. 422, 204–209 (2006)

    Google Scholar 

  • Cárdenas, C., Heidar-Zadeh, F., Ayers, P.W.: Benchmark values of chemical potential and chemical hardness for atoms and atomic ions (including unstable anions) from the energies of isoelectronic series. Phys. Chem. Chem. Phys. 18, 25721–25734 (2016)

    Google Scholar 

  • Carey, F.A., Sundberg, R.J.: Advanced Organic Chemistry Part A: Structure and Mechanisms. Springer, New York (2007)

    Google Scholar 

  • Chattaraj, P.K., Maiti, B.: Reactivity dynamics in atom-field interactions: a quantum fluid density functional study. J. Phys. Chem. A 105, 169–183 (2001)

    Google Scholar 

  • Chatterjee, A.: Special issue on application of density functional theory in chemical reactions. Int. J. Mol. Sci. 3, 234–236 (2002)

    Google Scholar 

  • Coulson, C.A.: Critical survey of the method of ionic-homopolar resonance. Proc. R. Soc. Lond. Ser. A 207, 63–73 (1951)

    Google Scholar 

  • Deb, B.M.: The force concept in chemistry. Rev. Mod. Phys. 45, 22–43 (1973)

    Google Scholar 

  • Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P.: Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21, 748 (2016)

    Google Scholar 

  • Donnelly, R.A., Parr, R.G.: Elementary properties of an energy functional of the first-order reduced density matrix. J. Chem. Phys. 69, 4431–4439 (1978)

    Google Scholar 

  • Fukui, K.: Role of frontier orbitals in chemical reactions. Science 218, 747–754 (1982)

    Google Scholar 

  • Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)

    Google Scholar 

  • Ghosh, D.C.: The scales and concept of electronegativity. J. Indian Chem. Soc. 80, 527–533 (2003)

    Google Scholar 

  • Ghosh, D.C.: A new scale of electronegativity based on absolute radii of atoms. J. Theor. Comput. Chem. 4, 21–33 (2005)

    Google Scholar 

  • Ghosh, D.C., Chakraborty, T.: Gordy’s electrostatic scale of electronegativity revisited. J. Mol. Struct. Theochem. 906, 87–93 (2009)

    Google Scholar 

  • Ghosh, D.C., Islam, N.: Whether electronegativity and hardness are manifest two different descriptors of the one and the same fundamental property of atoms: a quest. Int. J. Quantum Chem. 111, 40–51 (2011)

    Google Scholar 

  • Gordy, W.: A new method of determining electronegativity from other atomic properties. Phys. Rev. 69, 604–607 (1946)

    Google Scholar 

  • Gyftopoulos, E.P., Hatsopoulos, G.N.: Quantum-thermodynamic definition of electronegativity. Proc. Natl. Acad. Sci. USA 60, 786–793 (1968)

    Google Scholar 

  • Iczkowski, R.P., Margrave, J.L.: Electronegativity. J. Am. Chem. Soc. 83, 3547–3551 (1961)

    Google Scholar 

  • Jaramillo, P., Domingo, L.R., Chamorro, E., Pérez, P.: A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J. Mol. Struct. Theochem. 865, 68–72 (2008)

    Google Scholar 

  • Jaramillo, P., Pérez, P., Contreras, R., Tiznado, W., Fuentealba, P.: Definition of a nucleophilicity scale. J. Phys. Chem. A 110, 8181–8187 (2006)

    Google Scholar 

  • Kaya, S., Kaya, C.: A new equation based on ionization energies and electron affinities of atoms for calculating of group electronegativity. Comput. Theor. Chem. 1052, 42–46 (2015)

    Google Scholar 

  • Lackner, K.S., Zweig, G.: Introduction to the chemistry of fractionally charged atoms: electronegativity. Phys. Rev. D 28, 1671–1691 (1983)

    Google Scholar 

  • Legon, A.C., Millen, D.J.: Hydrogen bonding as a probe of electron densities: limiting gas-phase nucleophilicities and electrophilicities of B and HX. J. Am. Chem. Soc. 109, 356–358 (1987)

    Google Scholar 

  • Luo, Y.R., Benson, S.W.: The covalent potential: a simple and useful measure of the valence-state electronegativity for correlating molecular energetic. Acc. Chem. Res. 25, 375–381 (1992)

    Google Scholar 

  • Mande, C., Deshmukh, P.: A new scale of electronegativity on the basis of calculations of effective nuclear charges from X-ray spectroscopic data. J. Phys. B 10, 2293–2300 (1977)

    Google Scholar 

  • Mayr, H., Patz, M.: Scales of nucleophilicity and electrophilicity: a system for ordering polar organic and organometallic reactions. Angew. Chem. Int. Ed. Engl. 33, 938–957 (1994)

    Google Scholar 

  • Minitab 17 Statistical Software [Computer software] State College, PA. Minitab, Inc. www.minitab.com (2010)

  • Miranda-Quintana, R.A., Martínez González, M., Ayers, P.W.: Electronegativity and redox reaction. Phys. Chem. Chem. Phys. 18, 22235–22243 (2016)

    Google Scholar 

  • Mulliken, R.S.: A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782–793 (1934)

    Google Scholar 

  • Murphy, L.R., Meek, T.L., Allred, A.L., Allen, L.C.: Evaluation and test of Pauling’s electronegativity scale. J. Phys. Chem. A 104, 5867–5871 (2000)

    Google Scholar 

  • Nalewajski, R.F.: A study of electronegativity equalization. J. Phys. Chem. 89, 2831–2837 (1985)

    Google Scholar 

  • Ndassa, I.M., Adjieufack, A.I., Mbadcam Ketcha, J., Berski, S., Ríos-Gutiérrez, M., Domingo, L.R.: Understanding the reactivity and regioselectivity of [3 + 2] cycloaddition reactions between substituted nitrile oxides and methyl acrylate. A molecular electron density theory study. Int. J. Quantum Chem. 117, e25451 (2017)

    Google Scholar 

  • Noorizadeh, S., Shakerzadeh, E.: A new scale of electronegativity based on electrophilicity index. J. Phys. Chem. A 112, 3486–3491 (2008)

    Google Scholar 

  • Parr, R.G., Bartolotti, L.: On the geometric mean principle for electronegativity equalization. J. Am. Chem. Soc. 104, 3801–3803 (1982)

    Google Scholar 

  • Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)

    Google Scholar 

  • Parr, R.G., Szentpály, L., Liu, S.J.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Google Scholar 

  • Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford University Press and Clarendon Press, New York (1989)

    Google Scholar 

  • Parr, R.G., Yang, W.: Density-functional theory of the electronic structure of molecules. Annu. Rev. Phys. Chem. 46, 701–728 (1995)

    Google Scholar 

  • Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 3570–3582 (1932)

    Google Scholar 

  • Pauling, L.: The Nature of the Chemical Bond. Cornell University Press, New York (1960)

    Google Scholar 

  • Pearson, R.G.: Failure of Pauling’s bond energy equation. Chem. Commun. (London) 2, 65–67 (1968)

    Google Scholar 

  • Pearson, R.G.: Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988)

    Google Scholar 

  • Pérez, P., Domingo, L.R., Duque-Noreña, M., Chamorro, E.: A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions. J. Mol. Struct. Theochem. 895, 86–91 (2009)

    Google Scholar 

  • Politzer, P., Grice, M.E., Murray, J.S.: Electronegativities, electrostatic potentials and covalent radii. J. Mol. Struct. Theochem. 549, 69–76 (2001)

    Google Scholar 

  • Politzer, P., Murray, J.S.: Electronegativity: a perspective. J. Mol. Model. 24, 214 (2018a)

    Google Scholar 

  • Politzer, P., Murray, J.S.: The Hellmann-Feynman theorem: a perspective. J. Mol. Model. 24, 266 (2018b)

    Google Scholar 

  • Politzer, P., Weinstein, H.: Some relations between electronic distribution and electronegativity. J. Chem. Phys. 71, 4218–4220 (1979)

    Google Scholar 

  • Pritchard, H.O., Skinner, H.A.: The concept of electronegativity. Chem. Rev. 55, 745–786 (1955)

    Google Scholar 

  • Qteish, A.: Electronegativity scales and electronegativity-bond ionicity relations: a comparative study. J. Phys. Chem. Solids 124, 186–191 (2019)

    Google Scholar 

  • Rahm, M., Zeng, T., Hoffmann, R.: Electronegativity seen as the ground-state average valence electron binding energy. J. Am. Chem. Soc. 141, 342–351 (2018)

    Google Scholar 

  • Ranjan, P., Chakraborty, T.: Density functional approach: to study copper sulfide nanoalloy clusters. Acta Chim. Slov. 66, 173–181 (2019)

    Google Scholar 

  • Ruthenberg, K., González, J.C.M.: Electronegativity and its multiple faces: persistence and measurement. Found. Chem. 19, 61–75 (2017)

    Google Scholar 

  • Sanderson, R.T.: An interpretation of bond lengths and a classification of bonds. Science 114, 670–672 (1951)

    Google Scholar 

  • Sanderson, R.T.: Partial charges on atoms in organic compounds. Science 121, 207–208 (1955)

    Google Scholar 

  • Slater, J.C.: Quantum Theory of Molecules and Solids. McGraw-Hill, New York (1963)

    Google Scholar 

  • Tandon, H., Chakraborty, T., Suhag, V.: A new model of atomic nucleophilicity index and its application in the field of QSAR. Internat J Quant Struct Prop Relat. 4, 99–117 (2019a)

    Google Scholar 

  • Tandon, H., Chakraborty, T., Suhag, V.: A new scale of atomic static dipole polarizability invoking other periodic descriptors. J. Math. Chem. 57, 2142–2153 (2019b)

    Google Scholar 

  • Tandon, H., Chakraborty, T., Suhag, V.: A new scale of the electrophilicity index invoking the force concept and its application in computing the internuclear bond distance. J. Struct. Chem. 60, 1725–1734 (2019c)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Presidency University, Bengaluru; Manipal University Jaipur, Jaipur and BML Munjal University, Gurugram for providing computational and research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandon, H., Chakraborty, T. & Suhag, V. A scale of atomic electronegativity in terms of atomic nucleophilicity index. Found Chem 22, 335–346 (2020). https://doi.org/10.1007/s10698-020-09358-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-020-09358-4

Keywords

Navigation