Skip to main content
Log in

Geochemistry of Hydrothermal Particles in Shallow Submarine Hydrothermal Vents on Milos Island, Aegean Sea East Mediterranean

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The study aims to contribute to submarine hydrothermal particle geochemistry knowledge on the central part of the Hellenic Volcanic Arc. Hydrothermal fluids collected by scuba diving from active shallow hydrothermal venting areas on Milos Island in the Aegean Sea in East Mediterranean. Analysis carried out in suspended particles for Fe, Mn, Cu, Pb, Cd, Ca, Ba, Sr, Li, Al and Si. During sampling, gas and water flux was measured and gas/water ratios were estimated. The data presented significant time and spatial variability. The gas flux values in Palaeochori Bay varied from 4.5 to 63 L/h and water flux varied from 25 to 92 L/h. In Voudia Bay varied from 0.8 to 32 L/h and the water flux found from 7 to 118 L/h while in Adamas Bay the gas flux values were from 2 to 13 L/h and the water flux found from 24 to 72 L/h. The suspended particulate matter (SPM) flux varied from 0.07 to 47 mg/L in Palaeochori Bay, between 2 and 19 mg/L and from 0.8 to 4 mg/L respectively in the three sites studied. Metal/Al ratios also vary significantly within a short distance between seeps in the same area. The pH of hydrothermal waters was from 5.21 to 6.63 in Palaeochori Bay, from 5.45 to 6.39 in Voudia Bay and from 5.69 to 6.10 in Adamas Bay suggesting either different mixing of fluids with seawater deeper in the substrate or perhaps that gases CO2 and H2S control pH values. Based on the geochemical properties found a common geothermal reservoir is suggested located below the surface of the island and annual fluxes of elemental particulates have been estimated. The main scope of this research is to evaluate the fluxes of gas and water and the main particulate geochemistry of hydrothermal venting fluids. Hydrothermal particles from the submarine vents studied were dominated by Fe, Ca, Si and Al and strongly enriched in Mn, Cu, Pb, Ca and Ba. The chemistry of particles emitted from seeps can strongly influence the local sediment geochemistry and element distribution on sea bottom locally while subjected to further transportation can also affect a much greater region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. D. Alfieris, P. Voudouris, and P. G. Spry, “Shallow submarine epithermal Pb–Zn–Cu–Au–Ag–Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: mineralogical, geological and geochemical constraints,” Ore Geol. Rev. 53, 159–180 (2013).

    Article  Google Scholar 

  2. S. Aliani, R. Meloni, and P. R. Dando, “Periodicities in sediment temperature time–series at a marine shallow–water hydrothermal vent in Milos Island (Aegean Volcanic arc, Eastern Mediterranean),” J. Marine Syst. 46, 109–119 (2004).

    Article  Google Scholar 

  3. E. T. Balopoulos, et al., “Major advances in the oceanography of the southern Aegean Sea–Cretan Straits system (eastern Mediterranean),” Progr. Oceanogr. 44, 109–130 (1999).

    Article  Google Scholar 

  4. E. V. Blinova and V. B. Kurnosov, “Hydrothermal alterations of sediments in the southern trough of the Guaymas Basin (Gulf of California) and transformation of the composition of solutions,” Lithol. Mineral Res. 50, 433–451 (2015).

    Article  Google Scholar 

  5. K. Bostrom, M. N. A. Peterson, O. Joensuu, and D. E. Fisher, “Aluminum-poor ferromanganoan sediments on active oceanic ridges,” J. Geophys. Res. 74, 3261–3270 (1969).

    Article  Google Scholar 

  6. H. Cao et al., “Hydrothermal processes in the Edmond deposits, slow- to intermediate-spreading Central Indian Ridge,” J. Marine Syst. 180, 197–210 (2016).

    Article  Google Scholar 

  7. D. S. Cronan and S. P. Varnavas, “Metalliferous sediments off Milos, Hellenic volcanic arc,” Explor. Mining Geol. 8, 289–297 (1999).

    Google Scholar 

  8. L. W. Daesslé, D. S. Cronan, V. Marchig, and M. Wiedicke, “Hydrothermal sedimentation adjacent to the propagating Valu Fa Ridge, Lau Basin, SW Pacific,” Marine Geol. 162, 479–500 (2000).

    Article  Google Scholar 

  9. P. R. Dando et al., “Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic volcanic arc,” Cont. Shelf Res. 15, 913–929 (1995).

    Article  Google Scholar 

  10. P. R. Dando et al., “Microbiology of shallow hydrothermal sites off Palaeochori Bay, Milos (Hellenic volcanic arc),” Cahiers de Biologie Marine 39, 369–372 (1998).

    Google Scholar 

  11. P. R. Dando et al., “Hydrothermal studies in the Aegean Sea,” Phys. Chem. Earth, Part B: Hydrol., Oceans Atmosph. 25, 1–8 (2000).

    Google Scholar 

  12. H. N. Edmonds and C. R. German, “Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge,” Geochim. Cosmochim. Acta 68, 759–772 (2004).

    Article  Google Scholar 

  13. J. M. Edmond et al., “Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data,” Earth Planet. Sci. Lett. 46, 1–18 (1979).

    Article  Google Scholar 

  14. A. J. Findlay, A. Gartman, T. J. Shaw, and G. W. Luther Iii, “Trace metal concentration and partitioning in the first 1.5 m of hydrothermal vent plumes along the Mid-Atlantic Ridge: TAG, Snakepit, and Rainbow,” Chem. Geol. 412, 117–131 (2015).

    Article  Google Scholar 

  15. M. Fitzsimons et al., “Submarine hydrothermal brine seeps off Milos, Greece. Observations and geochemistry,” Mar. Chem. 57, 325–340 (1997).

    Article  Google Scholar 

  16. M. Fytikas, PhD Thesis (Aristotle University of Thessaloniki, Thessaloniki, 1977).

  17. M. Fytikas, “Updating of the geological and geothermal research on Milos island,” Geothermics 18, 485–496 (1989).

    Article  Google Scholar 

  18. M. Fytikas, D. Kouris, G. Marinelli, and J. Surcin, in International Congress on ThermalWaters, Geothermal Energy and Volcanism of the Mediterranean Area. (National Technical University, Dept. of Mineralogy, Petrology, Geology, Athens, Greece, 1976), vol. 1, pp. 511–515.

  19. M. Fytikas, O. Giuliani, F. Innocenti, G. Marinelli, and R. Mazzuoli, “Geochronological data on recent magmatism of the Aegean Sea,” Tectonophysics 31, T29–T34 (1976).

    Article  Google Scholar 

  20. M. Fytikas et al., “Volcanology and petrology of volcanic products from the island of Milos and neighbouring islets,” J. Volcanol. Geotherm. Res. 28, 297–317 (1986).

    Article  Google Scholar 

  21. M. Fytikas et al., in World Geothermal Congress. (Antalya,Turkey, 2005), pp. 24–29.

  22. W. P. Gilhooly et al., “Sulfur and oxygen isotope insights into sulfur cycling in shallow–sea hydrothermal vents, Milos, Greece,” Geochem. Trans., 12 14, (2014).

  23. G. P. Glasby et al., in Developments in Volcanology, Ed. by F. Michael and E. V. Georges (Elsevier, 2005), vol. 7, pp. 255–291.

    Google Scholar 

  24. G. P. Glasby, G. A. Cherkashov, G. M. Gavrilenko, V. A. Rashidov, and I. B. Slovtsov, “Submarine hydrothermal activity and mineralization on the Kurile and western Aleutian island arcs, N.W. Pacific,” Marine Geol. 231, 163–180 (2006).

    Article  Google Scholar 

  25. A. Godelitsas, et al., “Amorphous As–sulfide precipitates from the shallow–water hydrothermal vents off Milos Island (Greece),” Marine Chem. 177 (5), 687–696 (2015).

    Article  Google Scholar 

  26. E. M. Griffith and A. Paytan, “Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications,” Sedimentology 59, 1817–1835 (2012).

    Article  Google Scholar 

  27. M. Hannington, et al., “First observations of high–temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland,” Marine Geol. 177, 199–220 (2001).

    Article  Google Scholar 

  28. J. L. Houghton, et al., Spatially and temporally variable sulfur cycling in shallow–sea hydrothermal vents, Milos, Greece," Marine Chem. 208, 83–94 (2019).

    Article  Google Scholar 

  29. A. P. Karageorgis and C. L. Anagnostou, “Particulate matter spatial–temporal distribution and associated surface sediment properties: Thermaikos Gulf and Sporades Basin, NW Aegean Sea,” Cont. Shelf Res. 21, 2141–2153 (2001).

    Article  Google Scholar 

  30. S. P. Kilias et al., “Epithermal gold mineralisation in the active Aegean Volcanic Arc: the Profitis Ilias deposit, Milos island, Greece,” Mineral. Deposita 36, 32–44 (2001).

    Article  Google Scholar 

  31. C. Lalou, “Deep–sea hydrothermal venting: a recently discovered marine system,” J. Marine Syst. 1, 403–440 (1991).

    Article  Google Scholar 

  32. W. M. Landing and B. L. Lewis, “Collection, processing and analysis of marine particulate and colloidal material for transition metals,” Marine Particles: Analysis and Characterization, Ed. by D. Spencer and D. Hurd, Geophys. Monog. AGU 63, 263–272 (1991).

  33. M. I. Leybourne et al., “Submarine magmatic–hydrothermal systems at the Monowai volcanic center, Kermadec Arc,” Econ. Geol. 107, 1669–1694 (2012).

    Article  Google Scholar 

  34. Y. H. Li, A Compendium of Geochemistry: from Solar Nebula to the Human Brain (Princeton University Press, Princeton, 2000).

    Google Scholar 

  35. A. Liakopoulos, K. Athanassios, T. Markopoulos, and J. Boulegue, “A mineralogical, petrographic and geochemical study of samples from wells in the geothermal field of Milos island (Greece),” Geothermics 20, 237–256 (1991).

    Article  Google Scholar 

  36. D. H. Loring and R. T. T. Rantala, “Manual for the geochemical analyses of marine sediments and suspended particulate matter,” Earth Sciences Rev. 32, 235–283 (1992).

    Article  Google Scholar 

  37. R. P. Lowell, K. Kolandaivelu, and P. A. Rona, in Reference Module in Earth Systems and Environmental Sciences. (Elsevier, 2014).

    Google Scholar 

  38. V. Lykousis et al., “Major outputs of the recent multidisciplinary biogeochemical researches undertaken in the Aegean Sea,” J. Marine Syst. 33–34, 313–334 (2002).

    Article  Google Scholar 

  39. V. Marchig, J. Erzinger, and H. Rösch, “Sediments from a hydrothermal field in the central valley of the Galapagos Rift spreading center,” Marine Geol. 76, 243–251 (1987).

    Article  Google Scholar 

  40. P. Megalovasilis, Ph.D (National and Kapodistrian University of Athens, Athens, 2007).

    Google Scholar 

  41. P. Megalovasilis, “Partition geochemistry of hydrothermal precipitates from submarine hydrothermal fields in the Hellenic Volcanic Island Arc,” Geochem. Int. 52, 992–1010 (2014).

    Article  Google Scholar 

  42. P. Megalovasilis, Proceedings of the 14th Intern. Conference, Thessaloniki, 2016, Thessaloniki, Greece, 2016, Bull. Geol. Soc. Greece vol. L4, pp. 1933–1942 (2016).

    Google Scholar 

  43. D. Mendrinos, I. Choropanitis, O. Polyzou, and C. Karytsas, “Exploring for geothermal resources in Greece,” Geothermics 39, 124–137 (2010).

    Article  Google Scholar 

  44. M. J. Mottl, “Partitioning of energy and mass fluxes between mid–Ocean ridge axes and flanks at high and low temperature,” in Energy and Mass Transfer in Marine Hydrothermal Systems, Ed. by P. Halbach, V. Tunnicliffe, and J. Hein (DUP, Berlin, 2003), pp. 271–286.

    Google Scholar 

  45. P. Nomikou, D. Papanikolaou, M. Alexandri, D. Sakellariou, and G. Rousakis, “Submarine volcanoes along the Aegean volcanic arc,” Tectonophysics 597–598, 123–146 (2013).

    Article  Google Scholar 

  46. D. Papanikolaou, E. Lekkas, D. Syskakis, and E. Adamopolou, “Correlation on neotectonic structures with the geody–namic activity in Milos during the earthquakes of March 1992,” Bull. Geol. Soc. Greece 28, 413–428 (1993).

    Google Scholar 

  47. K. Papavassiliou et al., “New geochemical and mineralogical constraints on the genesis of the Vani hydrothermal manganese deposit at NW Milos island, Greece: comparison with the Aspro Gialoudi deposit and implications for the formation of the Milos manganese mineralization,” Ore Geol. Rev. 80, 594–611 (2017).

    Article  Google Scholar 

  48. X. L. Pichon and J. Angelier, “The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern mediterranean area,” Tectonophysics 60, 1–42 (1979).

    Article  Google Scholar 

  49. R. E. Price et al., “Processes influencing extreme As enrichment in shallow–sea hydrothermal fluids of Milos Island, Greece,” Chem. Geol. 348, 15–26 (2013).

    Article  Google Scholar 

  50. C. Robinson et al., 1997/1/1/ 1997.

  51. L. H. Royden and D. J. Papanikolaou, “Slab segmentation and late Cenozoic disruption of the Hellenic arc,” Geochem., Geophys., Geosyst. 12, 1–24 (2011).

    Article  Google Scholar 

  52. P.-M. Sarradin et al., “Dissolved and particulate metals (Fe, Zn, Cu, Cd, Pb) in two habitats from an active hydrothermal field on the EPR at 13°N,” Science Tot. Environ. 392, 119–129 (2008).

    Article  Google Scholar 

  53. R. M. Sherrell, M. P. Field, and G. Ravizza, “Uptake and fractionation of rare earth elements on hydrothermal plume particles at 9°45′N, East Pacific Rise,” Geochim. Cosmochim. Acta 63, 1709–1722 (1999).

    Article  Google Scholar 

  54. M. Stamatakis, U. Lutat, E. Regueiro, C. J.P., “Milos: the mineral island,” Industr. Minerals 341, 57–61 (1996).

    Google Scholar 

  55. M. G. Stamatakis, D. Fragoulis, S. Antonopoulou, and G. Stamatakis, “The opaline silica–rich sedimentary rocks of Milos Island, Greece and their behaviour as pozzolanas in the manufacture of cement,” Adv. Cement Res. 22, 171–183 (2010).

    Article  Google Scholar 

  56. The Engineering ToolBox. (2017), vol. 2017.

  57. R. P. Trocine and J. H. Trefry, “Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid–Atlantic Ridge at 26°N,” Earth Planet. Sci. Lett. 88, 1–15 (1988).

    Article  Google Scholar 

  58. E. Tserkezis and A. Tsakanikas, “The economic impact of mining activity on the Greek island of Milos: an unusual neighbor,” The Extractive Industries Society 3, 129–140 (2016).

    Article  Google Scholar 

  59. E. Valsami-Jones et al., “The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc,” J. Volcanol. Geotherm. Res. 148, 130–151 (2005).

    Article  Google Scholar 

  60. S. P. Varnavas and D. S. Cronan, “Arsenic, antimony and bismuth in sediments and waters from the Santorini hydrothermal field, Greece,” Chem. Geol. 67, 295–305 (1988).

    Article  Google Scholar 

  61. S. P. Varnavas and D. S. Cronan, “Submarine hydrothermal activity off Santorini and Milos in the Central Hellenic Volcanic Arc: a synthesis,” Chem. Geol. 224, 40–54 (2005).

    Article  Google Scholar 

  62. S. Varnavas, P. Megalovasilis, D. Panagiotaras, and P. Dando, XXIII General Assembly of European Geophysical Society (EGS). Part II Hydrology, Oceans & Atmospere, Nice – France, 20–24 April 1998 (Nice, 1998).

  63. S. P. Varnavas et al., “Compositional characterization of suspended particulate matter in hellenic volcanic arc hydrothermal centres,” Phys. Chem. Earth, Part B: Hydrol., Oceans, Atmosph. 25, 9–18 (2000).

    Google Scholar 

  64. K. L. Von Damm et al., “Chemistry of submarine hydrothermal solutions at 218N, East Pacific Rise,” Geochim. Cosmochim. Acta 49, 2197–2220 (1985).

    Article  Google Scholar 

  65. S. L. Walker and E. T. Baker, “Particle–size distributions within hydrothermal plumes over the Juan de Fuca Ridge,” Marine Geol. 78, 217–226 (1988).

    Article  Google Scholar 

  66. Y. Wang et al., “Mineralogy and geochemistry of hydrothermal precipitates from Kairei hydrothermal field, Central Indian Ridge,” Marine Geol. 354, 69–80 (2014).

    Article  Google Scholar 

  67. F. Wenzhöfer, O. Holby, R. N. Glud, H. K. Nielsen, and J. K. Gundersen, “In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece,” Marine Chem. 69, 43–54 (2000).

    Article  Google Scholar 

  68. M. Yücel et al., “Eco–geochemical dynamics of a shallow–water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean),” Chem. Geol. 356, 11–20 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I want to thank divers Panos Tsarpalis, Kostas Romeos for their excellent work during all the submarine research, the coordinator of the project Prof. Paul Dando and Prof. Soteris Varnavas for providing the opportunity to collect and analyse SPM samples. Part of this work had been funded by the EU MAST programme, Contract no. MAST2-CT94-0101. I wish also to express my appreciation to Dr Sergei M. Sudarikov for his in-depth comments, suggestions and corrections, which have greatly improved the manuscript and Maria Geraga Associate Professor in Geology Department of the University of Patras Greece, for her valuable advices and comments during SPSS and Factor analysis of geochemical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Megalovasilis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megalovasilis, P. Geochemistry of Hydrothermal Particles in Shallow Submarine Hydrothermal Vents on Milos Island, Aegean Sea East Mediterranean. Geochem. Int. 58, 151–181 (2020). https://doi.org/10.1134/S001670292002007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292002007X

Keywords:

Navigation