Skip to main content
Log in

Physicochemical Parameters and Geochemical Features of Fluids at Mesozoic Gold Deposits

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper continues a series of our earlier publications summarizing literature data on the physicochemical parameters and chemical composition of fluids at endogenic gold deposits and presents estimated average values of the temperature, pressure, and salinity of fluids, and variations in these parameters, at Mesozoic gold deposits. Parameters of mineralizing fluids at the Mesozoic deposits are discussed in comparison with the analogous parameters of fluids at Archean, Proterozoic, and Paleozoic gold deposits. The Mesozoic deposits are determined to generally differ from the older deposits in having fluids of higher temperature and lower pressure, with carbon dioxide in these fluids dominating over other gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. V. Aristov, M. M. Konstantinov, S. G. Kryazhev, and V. I. Ustinov, “Genetic features of gold and silver deposits from the western Verkhoyansk area: fluid inclusion and isotope data,” Geochem. Int. 46 (3), 313–317 (2008).

    Article  Google Scholar 

  2. T. Baker and J. R. Lang, “Fluid inclusion characteristics of intrusion-related gold mineralization, Tombstone-Tungsten magmatic belt, Yukon Territory, Canada,” Mineral. Deposita 36, 563–582 (2001).

    Article  Google Scholar 

  3. Yu. S. Berman, V. Yu. Prokofiev, S. V. Kozerenko, N. A. Eliseeva, and N. N. Kolpakova, “Rejuvenation of gold–silver mineralization of the Dukat volcanogenic deposit: fluid inclusion data,” Geokhimiya, No. 4, 539–548 (1993).

    Google Scholar 

  4. I. D. Borisenko, A. A. Borovikov, A. S. Borisenko, and I. V. Gas’kov, “Physicochemical conditions of ore formation in the Samolazovskoe gold deposit, Central Aldan,” Russ. Geol. Geophys. 58 (12), 1518–1529 (2017).

    Article  Google Scholar 

  5. N. S. Bortnikov, I. A. Bryzgalov, N. N. Krivitskaya, V. Yu. Prokof’ev, and O. V. Vikentieva, “The Maiskoe multimegastage disseminated gold–sulfide deposit (Chukotka, Russia): mineralogy, fluid inclusions, stable isotopes (O and S), history, and conditions of formation,” Geol. Ore Deposits 46 (6), 409–440 (2004).

    Google Scholar 

  6. N. S. Bortnikov, G. N. Gamyanin, O. V. Vikent’eva, V. Yu. Prokof’ev, V. A. Alpatov, and A. G. Bakharev, “Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia,” Geol. Ore Deposits, 49 (2), 87–128 (2007).

    Article  Google Scholar 

  7. N. S. Bortnikov, G. N. Gamynin, O. V. Vikent’eva, V. Yu. Prokof’ev, and A. V. Prokop’ev, “The Sarylakh and Sentachan gold–antimony deposits, Sakha–Yakutia: a case of combined mesothermal gold–quartz and epithermal stibnite ores,” Geol. Ore Deposits 52 (5), 339–372 (2010).

    Article  Google Scholar 

  8. P. Chai, J. G. Sun, Z. Q. Hou, Sh. W. Xing, and Zh. Yu. Wang, “Geological, fluid inclusion, H–O–S–Pb isotope, and Ar–Ar geochronology constraints on the genesis of the Nancha gold deposit, southern Jilin Province, northeast China,” Ore Geol. Rev. 72, 1053–1071 (2016).

    Article  Google Scholar 

  9. P. Chai, Z. Q. Hiu, and Z. Y. Zhang, “Geology, fluid inclusion and stable isotope constraints on the fluid evolution and resource potential of the Xiadian gold deposit, Jiaodong Peninsula,” Resource Geol. 67, 341-359 (2017).

    Article  Google Scholar 

  10. J. Chen, R. D. Yanga, L. J. Dua, L. L. Zheng, J. B. Gao, Ch. K. Laic, H. R. Wei, and M. G. Yuan, “Mineralogy, geochemistry and fluid inclusions of the Qinglong Sb-(Au) deposit, Youjiang basin (Guizhou, SW China),” Ore Geol. Rev. 92, 1–18 (2018).

    Article  Google Scholar 

  11. Y. J. Chen, F. Pirajno, N. Li, D. S. Guo, and Y. Lai, “Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: implications for ore genesis,” Ore Geol. Rev. 35, 245–261 (2009).

    Article  Google Scholar 

  12. P. W. Cromie and K. Zaw, “Geological setting, nature of ore fluids and sulphur isotope geochemistry of the Fu Ning Carlin-type gold deposits, Yunnan Province, China,” Geofluids 3, 133–143 (2003).

    Article  Google Scholar 

  13. C. G. Cunningham, R. P. Ashley, I-Ming Chou, H. Zushu, W. Chaoyuan, and L. Wenkang “Newly discovered sedimentary rock-hosted disseminated gold deposits in the People’s Republic of China,” Econ. Geol. 83, 1462–1467 (1988).

    Article  Google Scholar 

  14. J. Deng, Q. F. Wang, C. H. Xiao, L. Q. Yang, H. Liu, Q. G. Gong, and J. Zhang, “Tectonic-magmatic-metallogenic system, Tongling ore cluster region, Anhui Province, China,” Int. Geol. Rev. 53, 449–476 (2011).

    Article  Google Scholar 

  15. J. Deng, X. F. Liu, Q. F. Wang, and R. G. Pan, “Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C–D–O–S–Sr isotope compositions,” Ore Geol. Rev. 65, 674–686 (2015).

    Article  Google Scholar 

  16. L. J. Diakow, A. Panteleyev, and T. G. Schroeter, “Jurassic epithermal deposits in the Toodoggone River area, Northern British Columbia: examples of well-preserved, volcanic-hosted, precious metal mineralization,” Econ. Geol. 86, 529–554 (1991).

    Article  Google Scholar 

  17. P. Duuring, S. M. Rowins, B. S. M. McKinley, J. M. Dickinson, L. J. Diakow, Y.-S. Kim, and R. A. Creaser, “Magmatic and structural controls on porphyry-style Cu–Au–Mo mineralization at Kemess South, Toodoggone district of British Columbia, Canada,” Mineral. Deposita 44, 435–462 (2009).

    Article  Google Scholar 

  18. H. R. Fan, M. G. Zhai, Y. H. Xie, and J. H. Yang, “Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China,” Mineral. Deposita 38, 739–750 (2003).

    Article  Google Scholar 

  19. H. R. Fan, F. F. Hu, S. A. Wilde, K. F. Yang, and C. W. Jin, “The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid-inclusion and stable-isotope evidence for an origin from magmatic fluids,” Int. Geol. Rev. 53, 25–45 (2011).

    Article  Google Scholar 

  20. L. Fu, J. Wei, H. Chen, L. Bagas, J. Tan, H. Li, D. Zhang, and N. Tian, “The relationship between gold mineralization, exhumation of metamorphic core complex and magma cooling: Formation of the Anjiayingzi Au deposit, northern North China Craton,” Ore Geol. Rev. 73, 222–240 (2016).

    Article  Google Scholar 

  21. G. N. Gamyanin, V. Yu. Prokofiev, N. A. Goryachev, and N. S. Bortnikov, “Fluid inclusions in quartz of syngranitic noble-metal deposits of Northeast Russia,” Role of Mineralogy in Understanding Ore Formation (IGEM RAN, Moscow, 2007), pp. 92–97 [in Russian].

    Google Scholar 

  22. S. Gao, H. Xu, Y. Q. Zang, and T. Wang, “Mineralogy, ore-forming fluids and geochronology of the Shangmachang and Beidagou gold deposits, Heilongjiang province, NE China,” J. Geochem. Explor. 188, 137–155 (2018).

    Article  Google Scholar 

  23. Sh. Gao, H. Xu, Sh. Quan, Y. Zang, and T. Wang, “Geology, hydrothermal fluids, H–O–S–Pb isotopes, and Rb-Sr geochronology of the Daxintun orogenic gold deposit in Heilongjiang province, NE China,” Ore Geol. Rev. 92, 569–587 (2018).

    Article  Google Scholar 

  24. R. J. Goldfarb, D. I. Groves, and S. Gardoll, “Orogenic gold and geologic time: a global synthesis,” Ore Geol. Rev. 18, 1–75 (2001).

    Article  Google Scholar 

  25. N. A. Goryachev, O. V. Vikent’eva, N. S. Bortnikov, V. Yu. Prokof’ev, V. A. Alpatov, and V. V. Golub, “The world-class Natalka gold deposit, Northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore,” Geol. Ore Deposits 50 (5), 362–390 (2008).

    Article  Google Scholar 

  26. D. E. Growe, M. A. Millholland, and P. E. Brown “Precious and base metal mineralization associated with high-salinity fluids in the Mount Estelle pluton, south-central Alaska,” Econ. Geol. 86, 1103–1109 (1991).

    Article  Google Scholar 

  27. L. X. Gu, C. Z. Wu, Z. Z. Zhang, F. Pirajno, P. Ni, P. R. Chen, and X. J. Xiao, “Comparative study of ore-forming fluids of hydrothermal copper-gold deposits in the lower Yangtze River Valley, China,” Int. Geol. Rev. 53, 477–498 (2011).

    Article  Google Scholar 

  28. X. X. Gu, Y. M. Zhang, B. H. Li, S. Y. Dong, C. J. Xue, and S. H. Fu, “Hydrocarbon- and ore-bearing basinal fluids: a possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China,” Mineral. Deposita 47, 663–682 (2012).

    Article  Google Scholar 

  29. L. N. Guo, R. J. Goldfarb, Zh. L. Wang, R. H. Li, B. H. Chen, and J. L. Li, “A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: Do they differ?,” Ore Geol. Rev. 88, 511–533 (2017).

    Article  Google Scholar 

  30. R. J. Hickey, III “The Buckhorn Mountain (Crown Jewel) gold skarn deposit, Okanogan County, Washington,” Econ. Geol. 87, 125–141 (1992).

    Article  Google Scholar 

  31. F. F. Hu, H. R. Fan, X. H. Jiang, X. C. Li, K. F. Yang, and T. Mernagh, “Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China,” Geofluids 13, 528–541 (2013).

    Article  Google Scholar 

  32. H. B. Hu, J. W. Mao, S. Y. Niu, Y. F. Li, and M. W. Li, “Geology and geochemistry of telluride-bearing Au deposits in the Pingyi area, Western Shandong, China,” Mineral. Petrol. 87, 209–240 (2006).

    Article  Google Scholar 

  33. D. Z. Huang, X. Y. Wang, X. Y. Yang, G. M. Li, S. Q. Huang, Z. Liu, Z. H. Peng, and R. L. Qiu, “Geochemistry of gold deposits in the Zhangbaling Tectonic Belt, Anhui province, China,” Int. Geol. Rev. 53, 612–634 (2011).

    Article  Google Scholar 

  34. P. W. Jewell and W.T. Parry, “Geochemistry of the Mercur gold deposit (Utah, U.S.A.),” Chem. Geol. 69, 245–265 (1988).

    Article  Google Scholar 

  35. S. E. Kesler and B. H. Wilkinson, “The role of exhumation in the temporal distribution of ore deposits,” Econ. Geol. 101, 919–922 (2006).

    Article  Google Scholar 

  36. K. H. Kim, S. Lee, K. Nagao, H. Sumino, K. Yang, and J. I. Lee, “He–Ar–H–O isotopic signatures in Au-Ag bearing ore fluids of the Sunshin epithermal gold-silver ore deposits, South Korea,” Chem. Geol. 320, 128–139 (2012).

    Article  Google Scholar 

  37. Sh. Kojima, I. Soto, M. Quiroz, P. Valencia, and I. Fernandez, “Geological and geochemical characteristics of the intrusion-related vein-type gold deposits in the El Morado District, Coastal Cordillera, Northern Chile,” Resource Geol. 67, 197–206 (2017).

    Article  Google Scholar 

  38. V. A. Kovalenker, T. L. Krylova, G. D. Kiseleva, and I. N. Kigai, “Formation onditions of Au–Mo(W)–Pb–Zn ores of the Bugdain atypical porphyry deposit, Eastern Transbaikalia, Russia,” Dokl. Earth Sci. 416 (7), 1047–1049 (2007).

    Article  Google Scholar 

  39. A. N. Krasnov, T. Lomm, T. L. Krylova, and E. O. Groznova, “First data on the Raman microspectrometry of ore-forming fluids of gold and uranium mineralizations in Aldan (Republic of Sakha, Yakutia),” Dokl. Earth Sci. 413 (2), 304–307 (2007).

    Article  Google Scholar 

  40. R. G. Kravtsova, A. A. Borovikov, A. S. Borisenko, and V. Yu. Prokof’ev, “Formation conditions of gold–silver deposits in the northern Okhotsk Region, Russia,” Geol. Ore Deposits 45(5), 395–415 (2003).

    Google Scholar 

  41. J. Lai, G. Chi, S. Peng, Y. Shao, and B. Yang, “Fluid evolution in the formation of the Fenghuangshan Cu-Fe-Au deposit, Tongling, Anhui, China,” Econ. Geol. 102, 949–970 (2007).

    Article  Google Scholar 

  42. D. LeFort, J. Hanley, and M. Guillong, “Subepithermal Au–Pd mineralization associated with an alkalic porphyry Cu–Au deposit, Mount Milligan, Quesnel Terrane, British Columbia, Canada,” Econ. Geol. 106, 781–808 (2011).

    Article  Google Scholar 

  43. C. H. B. Leitch, C. I. Godwin, T. H. Brown, and B. E. Taylor, “Geochemistry of mineralizing fluids in the Bralorne-Pioneer mesothermal gold vein deposit, British Columbia, Canada,” Econ. Geol. 86, 318–353 (1991).

    Article  Google Scholar 

  44. B. Li, S. Y. Jiang, H. Y. Zou, M. Yang, and J. Q. Lai, “Geology and fluid characteristics of the Ulu Sokor gold deposit, Kelantan, Malaysia: Implications for ore genesis and classification of the deposit,” Ore Geol. Rev. 64, 400–424 (2015).

    Article  Google Scholar 

  45. J. X. Li, G. M. Li, K. Z. Qin, and B. Xiao, “High-temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper-gold deposit, Northern Tibet,” Geofluids 11, 134–143 (2011).

    Article  Google Scholar 

  46. X. F. Li, J. W. Mao, C. Wang, and Y. Watanabe, “The Daduhe gold field at the eastern margin of the Tibetan Plateau: He, Ar, S, O, and H isotopic data and their metallogenic implications,” Ore Geol. Rev. 30, 244–256 (2007).

    Article  Google Scholar 

  47. V. L. Litvinov, Yu. V. Lyakhov, and I. V. Popivnyak, “Physicochemical features of the formation of the Karii gold deposit, Eastern Transbaikalia, in mineral inclusions,” Mineral. Sb. L’vovsk. Gos. Univ. 2 (25), 152–163 (1971).

    Google Scholar 

  48. X. Liu, H. R. Fan, F. F. Hu, K. F. Yang, and B. J. Wen, “Nature and evolution of the ore-forming fluids in the giant Dexing porphyry Cu–Mo–Au deposit, Southeastern China,” J. Geochem. Explor. 171, 83–95 (2016).

    Article  Google Scholar 

  49. Yu. V. Lyakhov and L. K. Dmitriev, “Temperature regime and zoning of mineralization at the Darasun deposit: evidence from mineral inclusions,” Zap. Zabaikal’sk. Fil. Geograf. O-va SSSR 52, 53–64 (1971).

    Google Scholar 

  50. W. D. Ma, H. R. Fan, X. Liu, K. F. Yang, F. F. Hu, K. Zhao, Y. Ch. Cai, and H. L. Hu, “Hydrothermal fluid evolution of the Jintingling gold deposit in the Jiaodong peninsula, China: Constraints from U–Pb age, CL imaging, fluid inclusion and stable isotope,” J. Asian Earth Sci. 160, 287–303 (2018).

    Article  Google Scholar 

  51. T. L. Maloof, T. Baker, and J. F. H. Thompson, “The Dublin Gulch intrusion-hosted gold deposit, Tombstone plutonic suite, Yukon Territory, Canada,” Mineral. Deposita 36, 583–593 (2001).

    Article  Google Scholar 

  52. J. W. Mao, Z. H. Zhang, J. M. Yang, and Z. C. Zhang “The Hanshan gold deposit in the Caledonian North Qilian orogenic belt, NW China,” Mineral. Deposita 35, 63–71 (2000).

    Article  Google Scholar 

  53. J. Mao, R. Kerrich, H. Li, and Y. Li, “High 3He/4He ratios in the Wangu gold deposit, Hunan province, China: Implications for mantle fluids along the Tanlu deep fault zone,” Geochem. J. 36, 197–208 (2002).

    Article  Google Scholar 

  54. J. Mao, Y. Li, R. Goldfarb, Y. He, and K. Zaw, “Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: a mantle connection for mineralization?,” Econ. Geol. 98, 517–534 (2003).

    Google Scholar 

  55. B. I. A. McInnes, J. H. Crocket, and W. D. Goodfellow, “The Laforma deposit, an atypical epithermal-Au system at Freegold Mountain, Yukon Territory, Canada,” J. Geochem. Explor. 36, 73–102 (1990).

    Article  Google Scholar 

  56. O. F. Mironova, “Volatile components of natural fluids: evidence from inclusions in minerals: methods and results,” Geochem. Int. 48 (1), 83–90 (2010).

    Article  Google Scholar 

  57. O. F. Mironova, A. N. Salazkin, and V. B. Naumov, “Bulk and local techniques of analysis of volatile components in fluid inclusions,” Geokhimiya, No. 7, 974–984 (1995).

    Google Scholar 

  58. E. A. Naumov, A. A. Borovikov, A. S. Borisenko, M. V. Zadorozhnyi, and V. V. Murzin, “Physicochemical conditions of formation of epothermal gold–mercury deposits,” Russ. Geol. Geophys. 43 (12), 1055-1064 (2002).

    Google Scholar 

  59. V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, and V. V. Yarmolyuk “Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings,” Geochem. Int. 42 (10), 977–987 (2004).

    Google Scholar 

  60. V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Physicochemical formation parameters of hydrothermal mineral deposits: evidence from fluid inclusions. II. Gold, silver, lead, and zinc deposits,” Geochem. Int. 52 (6), 433–455 (2014).

    Article  Google Scholar 

  61. V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Mean concentrations of volatile components, major and trace elements in magmatic melts in major geodynamic environments on Earth. I. Mafic melts,” Geochem. Int. 55 (7), 629–653 (2017).

    Article  Google Scholar 

  62. Yu. N. Nikolaev, V. Yu. Prokof’ev, A. V. Apletalin, E. A. Vlasov, I. A. Baksheev, I. A. Kal’ko, and Ya. S. Komarova, “Gold–telluride mineralization of the Western Chukchi Peninsula, Russia: mineralogy, geochemistry, and formation conditions,” Geol. Ore Deposits 55 (2), 96–114 (2013).

    Article  Google Scholar 

  63. A. A. Obolensky, L. V. Gushchina, A. S. Borisenko, A. A. Borovikov, and G. G. Pavlova, “Antimony in hydrothermal processes: solubility, conditions of transfer, and metal-bearing capacity of solutions,” Russ. Geol. Geophys.48 (12), 992–1001 (2007).

    Article  Google Scholar 

  64. A. A. Obolensky, L. V. Gushchina, G. S. Anisimova, E. S. Serkebaeva, A. A. Tomilenko, and N. A. Gibsher, “Physicochemical modeling of mineral formation processes at the Badran gold deposit, Yakutia,” Russ. Geol. Geophys.52(3), 290–306 (2011).

    Article  Google Scholar 

  65. E. W. Porter and E. Ripley, “Petrologic and stable isotope study of the gold-bearing breccia pipe at the Golden Sunlight deposit, Montana,” Econ. Geol. 80, 1689–1706 (1985).

    Article  Google Scholar 

  66. R. D. Presnell and W. T. Parry, “Geology and geochemistry of the Barneys Canyon gold deposit, Utah,” Econ. Geol. 91, 273–288 (1996).

    Article  Google Scholar 

  67. V. Yu. Prokofiev and L. D. Zorina, “Fluid regime of the Darasun ore-magmatic system, Eastern Transbaikalia: evidence from fluid inclusions,” Geol. Geofiz. 37 (5), 50–61 (1996).

    Google Scholar 

  68. V. Yu Prokof’ev, A. M. Spiridonov, T. M. Kuzmina, V. A. Gnilusha, and V. F. Kovaleva, “Physicochemical conditions of mineralizing processes at the Kariiskoe gold deposit, Eastern Transbaikalia,” Geochem. Int. 35 (4), 424–434 (1997).

    Google Scholar 

  69. V. Yu. Prokof’ev, N. S. Bortnikov, L. D. Zorina, Z. I. Kulikova, N. L. Matel’, N. N. Kolpakova, and G. F. Il’ina, “Genetic features of the Darasun gold–sulfide deposit (eastern Transbaikal Region),” Geol. Ore Deposits 42 (5), 474–495 (2000).

    Google Scholar 

  70. V. Yu. Prokof’ev, L. D. Zorina, I. A. Baksheev, O. Yu. Plotinskaya, O. E. Kudryavtseva, and Yu. M. Ishkov, “Minerals and formation conditions of ores of the Teremkin Gold Deposit (Eastern Transbaikal Region, Russia),” Geol. Ore Deposits 46, 332–352 (2004).

    Google Scholar 

  71. V. Yu. Prokof’ev, L. D. Zorina, V. A. Kovalenker, and G. F. Il’ina, “First data on formation conditions of the Talatui Gold-Bearing Deposit, Eastern Transbaikal Region,” Dokl. Earth Sci. 401 (2), 315–318 (2005).

    Google Scholar 

  72. V. Yu. Prokof’ev, L. D. Zorina, V. A. Kovalenker, N. N. Akinfiev, I. A. Baksheev, A. N. Krasnov, G. A. Yurgenson, and N. V. Trubkin, “Composition, formation conditions, and genesis of the Talatui gold deposit, the eastern Transbaikal Region, Russia,” Geol. Ore Deposits 49 (1), 31–68 (2007).

    Article  Google Scholar 

  73. V. Yu. Prokofiev, V. B. Naumov, and O. F. Mironova, “Physicochemical parameters and geochemical features of fluids of Precambrian gold deposits,” Geochem. Int. 55 (12), 1047–1065 (2017).

    Article  Google Scholar 

  74. V. Yu. Prokofiev, V. B. Naumov, and O. F. Mironova, “Physicochemical parameters and geochemical features of fluids of Paleozoian gold deposits,” Geochem. Int. 56 (12), 1156–1171 (2018).

    Article  Google Scholar 

  75. J. J. Read and L. D. Meinert, “Gold-bearing quartz vein mineralization at the Big Hurrah mine, Seward Peninsula, Alaska,” Econ. Geol. 81, 1760–1774 (1986).

    Article  Google Scholar 

  76. C. S. Rombach and R. J. Newberry, “Shotgun deposit: granite porphyry-hosted gold-arsenic mineralization in southwestern Alaska, USA,” Mineral. Deposita 36, 607–621 (2001).

    Article  Google Scholar 

  77. E. Salvioli-Mariani, L. Toscani, T. Boschetti, D. Bersani, and M. Mattioli, “Gold mineralisations in the Canan area, Lepaguare District, east-central Honduras: Fluid inclusions and geochemical constraints on gold deposition,” J. Geochem. Explor. 158, 243–256 (2015).

    Article  Google Scholar 

  78. N. E. Savva, G. A. Pal’yanova, and E. E. Kolova, Conditions of petrovskite formation at the Dorozhnoe gold deposit, Susuman district, Magadan oblast,” Proc. Mining-Geol. Conf., Magadan, Russia, 2011 (Magadan, 2011), pp. 187–189.

  79. R. L. Sherlock, T. Roth, E. T. C. Spooner, and C. J. Bray, “Origin of the Eskay Creek precious metal-rich volcanogenic massive sulfide deposit: fluid inclusion and stable isotope evidence,” Econ. Geol. 94, 803–824 (1999).

    Article  Google Scholar 

  80. A. A. Sidorov, V. F. Belyi, A. V. Volkov, V. S. Kravtsov, and V. Yu. Prokof’ev, “Geology and formation conditions of the unique gold–silver deposit in Chukotka,” Dokl. Earth Sci. 412 (1), 29–34 (2007).

    Article  Google Scholar 

  81. A. A. Sidorov, V. Yu. Prokof’ev, A. V. Volkov, A. N. Krasnov, and N. V. Trubkin, “The electrum of the Agatovskoe Deposit (Northeast Russia) and its formation conditions,” Dokl. Earth Sci. 440 (2), 1399–1403 (2011).

    Article  Google Scholar 

  82. V. A. Sidorov, A. V. Volkov, V. Yu. Prokof’ev, N. E. Savva, and A. A. Sidorov, “Roots of the Au–Ag epithermal mineralization as exemplified by the Pauk ore field of the Detrin ore district, Russian Northeast,” Dokl. Earth Sci. 425, 357–362 (2009).

    Article  Google Scholar 

  83. C.-S. So and K. L. Shelton, “Fluid inclusion and stable isotope studies of gold-silver-bearing hydrothermal vein deposits, Yeoju mining district, Republic of Korea,” Econ. Geol. 82, 1309–1318 (1987).

    Article  Google Scholar 

  84. C.-S. So and S.-T. Yun, “Geochemical evidence of progressive meteoric water interaction in epithermal Au-Ag mineralization, Jeongju-Buan district, Republic of Korea,” Econ. Geol. 91, 636–646 (1991).

    Article  Google Scholar 

  85. C.-S. So, S.-J. Chi, and S.-H. Choi, “Geochemical studies on Au-Ag hydrothermal vein deposits, Republic of Korea: Jinan-Jeongeup mineralized area,” J. Min. Petr. Econ. Geol. 83, 449–471 (1988).

    Article  Google Scholar 

  86. C.-S. So, S.-T. Yun, S.-H. Choi, and K. L. Shelton, “Geochemical studies of hydrothermal gold-silver deposits, Republic of Korea: Youngdong mining district,” Mining Geol. 39, 9–19 (1989).

    Google Scholar 

  87. Ch.-S. So, S.-J. Chi, J.-S. Yoo, and K. L. Shelton, “The Jeoneui gold-silver mine, Republic of Korea. A geochemical study,” Mining Geol. 37, 313–322 (1987).

    Google Scholar 

  88. O. G. Sorokhtin and S. A, Ushakov, Earth’s Evolution (MGU, Moscow, 2002) [in Russian].

  89. A. M. Spiridonov, L. D. Zorina, S. P. Letunov, and V. Yu. Prokofiev, “The fluid regime of ore formation in the Balei gold-bearing magmatic system (eastern Transbaikalia, Russia),” Russ. Geol. Geophys. 51, 1101–1109 (2010).

    Google Scholar 

  90. P. G. Spry, M. M. Paredes, F. Foster, J.S. Truckle, and T. H. Chadwick, “Evidence for a genetic link between gold-silver telluride and porphyry molybdenum mineralization at the Golden Sunlight deposit, Whitehall, Montana: fluid inclusion and stable isotope studies,” Econ. Geol. 91, 507–526 (1996).

    Article  Google Scholar 

  91. W. Su, C. A. Heinrich, T. Pettke, X. Zhang, R. Hu, and B. Xia, “Sediment-hosted gold deposits in Guizhou, China: Products of wall-rock sulfidation by deep crustal fluids,” Econ. Geol. 104, 73–93 (2009).

    Article  Google Scholar 

  92. K.-F. Tang, J. W. Li, D. Selby, M. F. Zhou, S. J. Bi, and X. D. Deng, “Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong’ershan area, southern North China Craton,” Mineral. Deposita 48, 729–747 (2013).

    Article  Google Scholar 

  93. P. C. Thiersch, A. E. Williams-Jones, and J. R. Clark, “Epithermal mineralization and ore controls of the Shasta Au-Ag deposit, Toodoggone district, British Columbia, Canada,” Mineral. Deposita 32, 44–57 (1997).

    Article  Google Scholar 

  94. S. P. Tombe, J. P. Richards, C. J. Greig, W. S. Board, R. A. Creaser, K. A. Muehlenbachs, P. B. Larson, S. A. DuFrane, and T. Spell, “Origin of the high-grade Early Jurassic Brucejack epithermal Au-Ag deposits, Sulphur ets Mining Camp, northwestern British Columbia,” Ore Geol. Rev. 95, 480–517 (2018).

    Article  Google Scholar 

  95. A. V. Volkov and V. Yu. Prokof’ev, “Formation conditions and composition of ore-bearing fluids in the Promezhutochnoe gold and silver deposits (Central Chukchi Peninsula, Russia),” Russ. Geol. Geophys. 52, 1448–1460 (2011).

    Article  Google Scholar 

  96. A. V. Volkov, N. E. Savva, A. A. Sidorov, V. N. Egorov, V. S. Shapovalov, V. Yu. Prokof’ev, and E. E. Kolova, “Spatial distribution and formation conditions of Au-bearing porphyry Cu–Mo deposits in the northeast of Russia,” Geol. Ore Deposits48 (6), 448–472 (2006).

    Article  Google Scholar 

  97. A. V. Volkov, V. Yu. Prokof’ev, and A. A. Sidorov, “New data on formation conditions and composition of ore-forming fluids in the Promezhutochnoe gold–silver deposit (Central Chukotka, Russia),” Dokl. Earth Sci., 408, 218–222 (2006).

    Article  Google Scholar 

  98. A. V. Volkov, A. A. Sidorov, and V. Yu. Prokof’ev, “Roots of epithermal gold–silver deposits,” Role of Mineralogy in Understanding Ore Formation (IGEM RAN, Moscow, 2007), pp. 86–92 [in Russian].

    Google Scholar 

  99. A. V. Volkov, V. A. Sidorov, V. Yu. Prokof’ev, and A. A. Sidorov, Polychronous Formation of the Rodionovskoe Gold–Quartz Deposit, Russian Northeast,” Dokl. Earth Sci. 424 (1), 19–23 (2009).

    Article  Google Scholar 

  100. A. V. Volkov, N. E. Savva, A. A. Sidorov, V. Yu. Prokof’ev, N. A. Goryachev, S. D. Voznesensky, A. V. Al’shevsky, and A. D. Chernova, “Shkol’noe gold deposit, the Russian Northeast,” Geol. Ore Deposits 53, 1–26 (2011).

    Article  Google Scholar 

  101. A. V. Volkov, V. Yu. Prokof’ev, V. Yu. Alekseev, I. A. Baksheev, and A. A. Sidorov, “Ore-forming fluids and conditions of formation of gold–sulfide–quartz mineralization in the shear zone: Pogromnoe Deposit (Eastern Transbaikalian Region),” Dokl. Earth Sci. 441, 1492–1497 (2011).

    Article  Google Scholar 

  102. A. R. Wallace, “The Relief Canyon gold deposit, Nevada: a mineralized solution breccia,” Econ. Geol. 84, 279–290 (1989).

    Article  Google Scholar 

  103. Z. L. Wang, L. Q. Yang, L. N. Guo, E. Marsh, J. P. Wang, Y. Liu, C. Zhang, R. H. Li, L. Zhang, X. L. Zheng, and R. X. Zhao, “Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: a fluid inclusion study,” Ore Geol. Rev. 65, 701–717 (2015).

    Article  Google Scholar 

  104. B. J. Wen, H. R. Fan, F. F. Hu, X. Liu, K.F. Yang, Zh. F. Sun, and Z. F. Sun, “Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: Constrains from geology, fluid inclusions and H–O–S–He–Ar isotopic compositions,” J. Geochem. Explor. 171, 96–112 (2016).

    Article  Google Scholar 

  105. D. Xu, T. Deng, G. Chi, Zh. Wang, F. Zou, J. Zhang, and Sh. Zou, “Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting,” Ore Geol. Rev. 88, 565–618 (2017).

    Article  Google Scholar 

  106. X. C. Xu, Z. Z. Zhang, Q. N. Liu, J. W. Lou, Q. Q. Xie, P. L. Chu, and R. L. Frost, “Thermodynamic study of the association and separation of copper and gold in the Shizishan ore field, Tongling, Anhui Province, China,” Ore Geol. Rev. 43, 347–358 (2011).

    Article  Google Scholar 

  107. L. Q. Yang, J. Deng, L. N. Guo, Zh. L. Wang, X. Zh. Li, and J. L. Li, “Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China,” Ore Geol. Rev. 72, 585–602 (2016).

    Article  Google Scholar 

  108. L. Q. Yang, L. N. Guo, Z. L. Wang, R. X. Zhao, M. C. Song, and X. L. Zheng, “Timing and mechanism of gold mineralization at the Wang’ershan gold deposit, Jiaodong Peninsula, eastern China,” Ore Geol. Rev. 88, 491–510 (2017).

    Article  Google Scholar 

  109. Y. Yao, G. Morteani, and R. B. Trumbull, “Fluid inclusion microthermometry and the PT evolution of gold-bearing hydrothermal fluids in the Niuxinshan gold deposit, eastern Hebei province, NE China,” Mineral. Deposita 34, 348–365 (1999).

    Article  Google Scholar 

  110. B. C. Yoo, H. K. Lee, and N. C. White, “Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)—a mesothermal, vein-hosted gold-silver deposit,” Mineral. Deposita 45, 161–187 (2010).

    Article  Google Scholar 

  111. O. D. Zeng, J. M. Liu, H. T. Liu, P. Shen, and L. C. Zhang, “The ore-forming fluid of the gold deposits of Muru gold belt in eastern Shandong, China—a case study of Denggezhuang gold deposit,” Resource Geol. 56, 375–384 (2006).

    Article  Google Scholar 

  112. D. H. Zhang, G. J. Xu, W. H. Zhang, and S. D. Golding, “High salinity fluid inclusions in the Yinshan polymetallic deposit from the Le-De metallogenic belt in Jiangxi Province, China: their origin and implications for ore genesis,” Ore Geol. Rev. 31, 247–260 (2007).

    Article  Google Scholar 

  113. G. B. Zhang, Y. C. Yang, J. Wang, K. Y. Wang, and S.Q. Ye, “Geology, geochemistry, and genesis of the hot-spring-type Sipingshan gold deposit, eastern Heilongjiang Province, Northeast China,” Int. Geol. Rev. 55, 482–495 (2013).

    Article  Google Scholar 

  114. X. H. Zhang, Q. Liu, Y. J. Ma, and H. Wang, “Geology, fluid inclusions, isotope geochemistry, and geochronology of the Paishanlou shear zone-hosted gold deposit, North China Craton,” Ore Geol. Rev. 26, 325–348 (2005).

    Article  Google Scholar 

  115. Y. M. Zhang, X. X. Gu, L. Liu, S. Y. Dong, K. Li, B. H. Li, and P. R. Lv, “Fluid inclusion and H–O isotope evidence for immiscibility during mineralization of the Yinan Au–Cu–Fe deposit, Shandong, China,” J. Asian Earth Sci. 42, 83–96 (2011).

    Article  Google Scholar 

  116. Z. Q. Zhang, L. Yong, and Y. J. Chen, “Fluid inclusion study of the Linglong gold deposit, Shandong province, China,” Acta Petrologica Sinica 23 (9), 2207–2216 (2007).

    Google Scholar 

  117. H. R. Zhong, S. W. Chao, B. X. Wu, T. G. Zhi, and A. H. Hofstra, “Geology and geochemistry of Carlin-type gold deposits in China,” Mineral. Deposita 37, 378–392 (2002).

    Article  Google Scholar 

  118. J. Zhong, Y. J. Chen, J. Chen, J. P. Qi, and M. Ch. Dai, “Geology and fluid inclusion geochemistry of the Zijinshan high-sulfidation epithermal Cu–Au deposit, Fujian Province, SE China: Implication for deep exploration targeting,” J. Geochem. Explor. 184, 49–65 (2018).

    Article  Google Scholar 

  119. J. Zhong, Y. J. Chen, J. P. Qi, J. Chen, M.Ch. Dai, and J. Li, “Geology, fluid inclusion and stable isotope study of the Yueyang Ag-Au-Cu deposit, Zijinshan orefield, Fujian Province, China,” Ore Geol. Rev. 86, 254–270 (2017).

    Article  Google Scholar 

  120. Zhou, T. F. Yuan, S. Yue, X. Liu, X. Zhang, and Y. Fan, “Geochemistry and evolution of ore-forming fluids of the Yueshan Cu–Au skarn and vein-type deposits, Anhui Province, South China,” Ore Geol. Rev. 31, 279–303 (2007).

    Article  Google Scholar 

  121. Z. J. Zhou, S. Y. Jiang, Y. Qin, H. X. Zhao, and C. J. Hu, “Fluid inclusion characteristics and ore genesis of the Wenyu gold deposit, Xiaoqinling gold belt,” Acta Petrologica Sinica 27(12), 3787–3799 (2011).

    Google Scholar 

  122. M. T. Zhu, L. C. Zhang, G. Wu, H. Y. He, and M. L. Cui, “Fluid inclusions and He–Ar isotopes in pyrite from the Yinjiagou deposit in the southern margin of the North China Craton: a mantle connection for poly-metallic mineralization,” Chem. Geol. 351, 1–14 (2013).

    Article  Google Scholar 

  123. T. V. Zhuravkova, G. A. Palyanova, K. V. Chudnenko, R. G. Kravtsova, I. R. Prokopyev, A. S. Makshakov, and A. S. Borisenko, “Physicochemical models of formation of gold–silver mineralization at the Rogovik deposit (Northeastern Russia),” Ore Geol. Rev. 91, 1–20 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.A. Savicheva and E.M. Spiridonov for constructive criticism and valueable recommendations.

Funding

This study was financially supported by Program 72-4 of Fundamental Research at the Russian Academy of Sciences and by the Russian Foundation for Basic Research, project no. 18-05-7000.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Prokofiev or V. B. Naumov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokofiev, V.Y., Naumov, V.B. & Mironova, O.F. Physicochemical Parameters and Geochemical Features of Fluids at Mesozoic Gold Deposits. Geochem. Int. 58, 128–150 (2020). https://doi.org/10.1134/S001670292002010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292002010X

Keywords:

Navigation