Skip to main content

Advertisement

Log in

On the Numerical Solution of Differential Linear Matrix Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel approach for the numerical solution of differential linear matrix inequalities. The solutions are searched in the class of piecewise-quadratic functions with symmetric matrix coefficients to be determined. To limit the numbers of unknowns, congruence constraints are considered to guarantee continuity of the solution and of its derivative. In Example section, some control problems involving differential linear matrix inequalities are considered and solved in order to compare the proposed approach with alternative approximation methods adopted in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Briat, C.: Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints. Automatica 49(11), 3449–3457 (2013)

    Article  MathSciNet  Google Scholar 

  2. Briat, C.: Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints. Automatica 74, 279–287 (2016)

    Article  MathSciNet  Google Scholar 

  3. Geromel, J., Colaneri, P., Bolzern, P.: Differential linear matrix inequality in optimal sampled-data control. Automatica 100, 289–298 (2019)

    Article  MathSciNet  Google Scholar 

  4. Gabriel, G., Gonçalves, T., Geromel, J.: Optimal and robust sampled-data control of Markov jump linear systems: a differential LMI approach. IEEE Trans. Autom. Control 63(9), 3054–3060 (2018)

    Article  MathSciNet  Google Scholar 

  5. Shaked, U., Suplin, V.: A new bounded real lemma representation for the continuous-time case. IEEE Trans. Autom. Control 46(9), 1420–1426 (2001)

    Article  MathSciNet  Google Scholar 

  6. Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., De Tommasi, G.: Finite-Time Stability and Control. Springer, Berlin (2014)

    Book  Google Scholar 

  7. Amato, F., De Tommasi, G., Pironti, A.: Finite-Time Stability: An Input–Output Approach. Wiley, New York (2018)

    Book  Google Scholar 

  8. Tartaglione, G., Ariola, M., Amato, F.: An observer-based output feedback controller for the finite-time stabilization of Markov jump linear systems. IEEE Control Syst. Lett. 3(3), 763–768 (2019)

    Article  Google Scholar 

  9. Tartaglione, G., Ariola, M., De Tommasi, G., Amato, F.: Annular finite-time stabilization of stochastic linear time-varying systems. In: Proceedings of the IEEE Conference on Decision and Control, Miami Beach (FL), USA, pp. 7219–7224 (2018)

  10. Ariola, M., De Tommasi, G., Tartaglione, G., Amato, F.: Hybrid architecture for vehicle lateral collision avoidance. IET Control Theory Appl. 12(14), 1941–1950 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gonçalves, T., Gabriel, G., Geromel, J.: Differential linear matrix inequalities optimization. IEEE Control Syst. Lett. 3(2), 380–385 (2019)

    Article  Google Scholar 

  12. Labit, Y., Peaucelle, D., Henrion, D.: SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI. In: Proceedings of IEEE International Symposium on Computer Aided Control System Design, pp. 272–277 (2002)

  13. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3: a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  14. Andersen, E., Andersen, K.: The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: High Performance Optimization. Springer, pp. 197–232 (2000)

  15. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: In Proceedings of the CACSD Conference. Taipei, Taiwan (2004)

  16. Amato, F., Carannante, G., De Tommasi, G., Pironti, A.: Input-output finite-time stability of linear systems: necessary and sufficient conditions. IEEE Trans. Autom. Control 57(12), 3051–3063 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Tartaglione.

Additional information

Communicated by Firdaus E. Udwadia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariola, M., De Tommasi, G., Mele, A. et al. On the Numerical Solution of Differential Linear Matrix Inequalities. J Optim Theory Appl 185, 540–553 (2020). https://doi.org/10.1007/s10957-020-01650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01650-9

Keywords

Mathematics Subject Classification

Navigation