Skip to main content
Log in

Vector versions of Prony’s algorithm and vector-valued rational approximations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Given the scalar sequence \(\{f_{m}\}^{\infty }_{m=0}\) that satisfies

$$ f_{m} = \sum\limits_{i=1}^{k} {a_{i}}{\zeta}_{i}^{m},\quad m=0,1,\ldots, $$

where \(a_{i}, \zeta _{i}\in \mathbb {C}\) and ζi are distinct, the algorithm of Prony concerns the determination of the ai and the ζi from a finite number of the fm. This algorithm is also related to Padé approximants from the infinite power series \({\sum }^{\infty }_{j=0}f_{j}z^{j}\). In this work, we discuss ways of extending Prony’s algorithm to sequences of vectors \({\{\boldsymbol {f}_{m}\}}^{\infty }_{m=0}\) in \(\mathbb {C}^{N}\) that satisfy

$$ \boldsymbol{f}_{m} = \sum\limits_{i=1}^{k} \boldsymbol{a}_{i} {\zeta}_{i}^{m}, \quad m=0,1,\ldots, $$

where \(\boldsymbol {a}_{i}\in \mathbb {C}^{N}\) and \(\zeta _{i}\in \mathbb {C}\). Two distinct problems arise depending on whether the vectors ai are linearly independent or not. We consider different approaches that enable us to determine the ai and ζi for these two problems, and develop suitable methods. We concentrate especially on extensions that take into account the possibility of the components of the ai being coupled. One of the applications we consider concerns the case in which

$$ \boldsymbol{f}_{m} = \sum\limits_{i=1}^{r} \boldsymbol{a}_{i} {\zeta}_{i}^{m}, \quad m=0,1,\ldots,\quad r \text{ large}, $$

and we would like to approximate/determine of a number of the pairs (ζi, ai) for which |ζi| are largest. We present the related theory and provide numerical examples that confirm this theory. This application can be extended to the more general case in which

$$ \boldsymbol{f}_{m} = \sum\limits_{i=1}^{r} \boldsymbol{p}_{i} (m){\zeta}_{i}^{m}, \quad m=0,1,\ldots, $$

where \(\boldsymbol {p}_{i}(m)\in \mathbb {C}^{N}\) are some (vector-valued) polynomials in m, and \(\zeta _{i}\in \mathbb {C}\) are distinct. Finally, the methods suggested here can be extended to vector sequences in infinite dimensional spaces in a straightforward manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, G.A. Jr., Graves-Morris, P.R.: Padé Approximants, 2nd edn. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  2. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: STOC ’88: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp 301–309. ACM, New York (1988)

  3. Chan, T.F.: An improved algorithm for computing the singular value decomposition. ACM Trans. Math. Software 8, 72–83 (1982)

    Article  MathSciNet  Google Scholar 

  4. Cuyt, A., Lee, W.-s.: Multivariate exponential analysis from the minimal number of samples. Adv. Comput. Math. 44, 987–1002 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cuyt, A., Lee, W.-s., Yang, X.: On tensor decomposition, sparse interpolation and Padé approximation. Jaen J. Approx. 8, 33–58 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Dragotti, P.L., Vetterli, M., Blu, T.: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang–Fix. IEEE Trans. Signal Process. 55, 1741–1757 (2007)

    Article  MathSciNet  Google Scholar 

  7. Gilewicz, J.: Approximants De Padé. Number 667 in Lecture Notes in Mathematics. Springer, New York (1978)

    Book  Google Scholar 

  8. Golub, G.H., Milanfar, P., Varah, J.: A stable numerical method for inverting shape from moments. SIAM J. Sci Comput. 21, 1222–1243 (1999)

    Article  MathSciNet  Google Scholar 

  9. Hall, M.: Combinatorial Theory. Blaisdell, Waltham, Mass. (1967)

  10. Hua, Y., Sarkar, T.K.: Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal Process. 38, 814–824 (1990)

    Article  MathSciNet  Google Scholar 

  11. Peter, T., Plonka, G.: A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Problems 29. Article 025001 (2013)

  12. Plonka, G., Tasche, M.: Prony methods for recovery of structured functions. GAMM–Mitt. 37, 239–258 (2014)

    Article  MathSciNet  Google Scholar 

  13. Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439, 1024–1039 (2013)

    Article  MathSciNet  Google Scholar 

  14. Potts, D., Tasche, M.: Fast ESPRIT algorithms based on partial singular value decompositions. Appl. Numer. Math. 88, 31–45 (2015)

    Article  MathSciNet  Google Scholar 

  15. de Prony, R.: Essai expérimental et analytique: sur les lois de la dilatabilité de fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures. Journal de l’École Polytechnique Paris 1, 24–76 (1795)

    Google Scholar 

  16. Roy, R., Kailath, T.: ESPRIT - estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37, 984–994 (1989)

    Article  Google Scholar 

  17. Schmidt, R.O.: A Signal Subspace Approach to Multiple Emitter Location and Spectral Estimation. Ph.D. thesis, Stanford University (1981)

  18. Sidi, A.: Interpolation at equidistant points by a sum of exponential functions. J. Approx. Theory 34, 194–210 (1982)

    Article  MathSciNet  Google Scholar 

  19. Sidi, A.: Interpolation by a sum of exponential functions when some exponents are preassigned. J. Math. Anal. Appl. 112, 151–164 (1985)

    Article  MathSciNet  Google Scholar 

  20. Sidi, A.: Rational approximations from power series of vector-valued meromorphic functions. J. Approx. Theory 77, 89–111 (1994)

    Article  MathSciNet  Google Scholar 

  21. Sidi, A.: Application of vector-valued rational approximation to the matrix eigenvalue problem and connections with Krylov subspace methods. SIAM J Matrix Anal. Appl. 16, 1341–1369 (1995)

    Article  MathSciNet  Google Scholar 

  22. Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Number 10 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  23. Sidi, A.: Vector Extrapolation Methods with Applications. Number 17 in SIAM Series on Computational Science and Engineering. SIAM, Philadelphia (2017)

    Book  Google Scholar 

  24. Sidi, A.: On the analytical structure of a vector sequence generated via a linear recursion. Technical Report CS-2018-03, Computer Science Dept., Technion–Israel Institute of Technology (2018)

  25. Thefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    Google Scholar 

  26. Weiss, L., McDonough, R.: Prony’s method, Z-transforms, and Padé approximation. SIAM Rev. 5, 145–149 (1963)

    Article  MathSciNet  Google Scholar 

  27. Wu, B., Li, Z., Li, S.: The implementation of a vector-valued rational approximate method in structural reanalysis problems. Comput. Methods Appl. Mech. Engrg. 192, 1773–1784 (2003)

    Article  Google Scholar 

  28. Wu, B., Zhong, H.: Application of vector-valued rational approximations to a class of non-linear oscillations. Intern. J. Non-Linear Mech. 38, 249–254 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank Mr. Eitan Kaminski for carrying out the computations for the examples in Section 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avram Sidi.

Additional information

Communicated by: Lothar Reichel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidi, A. Vector versions of Prony’s algorithm and vector-valued rational approximations. Adv Comput Math 46, 30 (2020). https://doi.org/10.1007/s10444-020-09751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09751-9

Keywords

Mathematics subject classification (2010)

Navigation