Skip to main content
Log in

A linearly implicit structure-preserving Fourier pseudo-spectral scheme for the damped nonlinear Schrödinger equation in three dimensions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a linearly implicit Fourier pseudo-spectral scheme, which preserves the total mass and energy conservation laws for the damped nonlinear Schrödinger equation in three dimensions. With the aid of the semi-norm equivalence between the Fourier pseudo-spectral method and the finite difference method, an optimal L2-error estimate for the proposed method without any restriction on the grid ratio is established by analyzing the real and imaginary parts of the error function. Numerical results are addressed to confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: Numerical approximation of singular solutions of the damped nonlinear Schrödinger equation. In: ENUMATH, pp. 117–124. World Scientific (1998)

  2. Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys Commun. 184, 2621–2633 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bao, W., Cai, Y.: Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math Comp. 82, 99–128 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bao, W., Jaksch, D.: An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity. SIAM J. Numer Anal. 41, 1406–1426 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bao, W., Jaksch, D., Markowich, P.A.: Three dimensional simulation of jet formation in collapsing condensates. J. Phys. B At. Mol. Opt. Phys. 37, 329–343 (2003)

    Article  Google Scholar 

  7. Bhatt, A., Moore, B.E.: Exponential integrators preserving local conservation laws of PDEs with time-dependent damping/driving forces. J. Comput. Appl Math. 352, 341–351 (2019)

    Article  MathSciNet  Google Scholar 

  8. J. P. Boyd: Chebyshev and Fourier Spectral Methods 2nd edition. Dover, Mineola, New York (2001)

    Google Scholar 

  9. Bridges, T.J., Reich, S.: Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations. Physica D 152/153, 491–504 (2001)

    Article  MathSciNet  Google Scholar 

  10. Cai, J., Hong, J., Wang, Y., Gong, Y.: Two energy-conserved splitting methods for three-dimensional time-domain Maxwell’s equations and the convergence analysis. SIAM J. Numer. Anal. 53, 1918–1940 (2015)

    Article  MathSciNet  Google Scholar 

  11. Cai, J., Wang, Y., Gong, Y.: Numerical analysis of AVF, methods for three-dimensional time-domain Maxwell’s equations. J. Sci Comput. 66, 141–176 (2016)

    Article  MathSciNet  Google Scholar 

  12. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in S,obolev spaces. Math Comp. 38, 67–86 (1982)

    Article  MathSciNet  Google Scholar 

  13. Chen, J., Qin, M.: Multi-symplectic FOurier pseudospectral method for the nonlinear Schrödinger equation. Electr. Trans. Numer. Anal. 12, 193–204 (2001)

    MATH  Google Scholar 

  14. Chen, Y., Song, S., Zhu, H.: The multi-symplectic Fourier pseudospectral method for solving two-dimensional Hamiltonian PDEs. J. Comput. Appl. Math. 236, 1354–1369 (2011)

    Article  MathSciNet  Google Scholar 

  15. Delfour, M., Fortin, M., Payr, G.: Finite-difference solutions of a non-linear Schrödinger equation. J Comput. Phys. 44, 277–288 (1981)

    Article  MathSciNet  Google Scholar 

  16. Fibich, G.: Self-focusing in the damped nonlinear Schrödinger equation. SIAM J. Appl. Math. 61, 1680–1705 (2001)

    Article  MathSciNet  Google Scholar 

  17. Fu, H., Zhou, W., Qian, X., Song, S., Zhang, L.: Chin. Phys B. Chin. Phys B 25, 110201 (2016)

    Article  Google Scholar 

  18. Goldman, M.V., Rypdal, K., Hafizi, B.: Dimensionality and dissipation in langmuir collapse. Phys. Fluids 23, 945–955 (1980)

    Article  MathSciNet  Google Scholar 

  19. Gong, Y., Cai, J., Y. Wang.: Multi-symplectic Fourier pseudospectral method for the Kawahara equation. Commun. Comput. Phys. 16, 35–55 (2014)

    Article  MathSciNet  Google Scholar 

  20. Gong, Y., Wang, Q., Wang, Y., Cai, A.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  Google Scholar 

  21. Hansen, P.C., Nagy, J.G.: Deblurring images matrices, spectra, and filtering, chapter 4. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  22. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University, USA (1995)

    MATH  Google Scholar 

  23. Hu, W., Deng, Z., Yin, T.: Almost structure-preserving analysis for weakly linear damping nonlinear Schrödinger equation with periodic perturbation. Commun. Nonlinear Sci. Numer. Simulat. 42, 298–312 (2017)

    Article  Google Scholar 

  24. Iyengar, S.R.K., Jayaraman, G., Balasubramanian, V.: Variable mesh difference schemes for solving a nonlinear Schrödinger equation with a linear damping term. Comput. Math Appl. 40, 1375–1385 (2000)

    Article  MathSciNet  Google Scholar 

  25. Jiang, C., Cai, W., Wang, Y.: Optimal error estimates of a conformal Fourier pseudo-spectral method for the damped nonlinear Schrödinger equation. Numer. Methods Partial Differential Eq. 34, 1422–1454 (2018)

    Article  Google Scholar 

  26. Jiang, C., Cai, W., Wang, Y., Li, H.: A sixth order energy-conserved method for three-dimensional time-domain Maxwell’s equations. arXiv preprint, arXiv:1705.08125 (2017)

  27. Kong, L., Zhang, J., Cao, Y., Duan, Y., Huang, H.: SSemi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrödinger equations. Comput. Phys. Commun. 181, 1369–1377 (2010)

    Article  Google Scholar 

  28. Li, Y., Wu. X.: General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs. J. Comput. Phys. 301, 141–166 (2015)

    Article  MathSciNet  Google Scholar 

  29. Moore, B.E., Noreña, L., Schober, C.M.: Conformal conservation laws and geometric integration for damped Hamiltonian PDEs. J. Comput. Phys. 232, 214–233 (2013)

    Article  MathSciNet  Google Scholar 

  30. Peranich, L.S.: A finite difference scheme for solving a non-linear Schrödinger equation with a linear damping term. J. Comput. Phys. 68, 501–505 (1987)

    Article  MathSciNet  Google Scholar 

  31. Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C., Pheiff, D., Socha, K.: Stabilizing the Benjamin-Feir instability. J. Fluid Mech. 539, 229–271 (2005)

    Article  MathSciNet  Google Scholar 

  32. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  33. Sun, W., Wang, W.: Optimal error analysis of C,rank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D. J. Comput. Appl Math. 317, 685–699 (2017)

    Article  MathSciNet  Google Scholar 

  34. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer Science & Business Media, New York (2012)

    Google Scholar 

  35. Tsutsumi, M.: Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations. SIAM J. Math. Anal. 15, 357–366 (1984)

    Article  MathSciNet  Google Scholar 

  36. Wang, T., Guo, B., Xu, Q.: Fourth-order compact energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  Google Scholar 

  37. Xiang, X.: The long time behaviour of spectral approximate solution for nonlinear Schrödinger equation with weak damping. Numer. Math. J. Chin. Uni. 8, 165–176 (1999)

    Google Scholar 

  38. Zhang, F.: Long-time behavior of finite difference solutions of three-dimensional nonlinear Schrödinger equation with weakly damped. J. Comput. Math. 22, 593–604 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Zhang, F., Lu, S.: Long-time behavior of finite difference solutions of a nonlinear S,chrödinger equation with weakly damped. J. Comput. Math. 19, 393–406 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, R., Yu, X., Zhao, G.: A new finite difference scheme for a dissipative cubic nonlinear Schrödinger equation. Chin. Phys. B 20, 030204 (2011)

    Article  Google Scholar 

  41. Zhou, Y.: Applications of Discrete Functional Analysis to the Finite Difference Method. International Academic Publishers, Beijing (1990)

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the referees for their insightful comments and suggestions.

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 11771213, 11901513), the National Key Research and Development Project of China (Grant Nos. 2018YFC0603500, 2018YFC1504205), the Yunnan Provincial Department of Education Science Research Fund Project (Grant No. 2019J0956), and the Science and Technology Innovation Team on Applied Mathematics in Universities of Yunnan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushun Wang.

Additional information

Communicated by: Jan Hesthaven

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Song, Y. & Wang, Y. A linearly implicit structure-preserving Fourier pseudo-spectral scheme for the damped nonlinear Schrödinger equation in three dimensions. Adv Comput Math 46, 23 (2020). https://doi.org/10.1007/s10444-020-09781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09781-3

Keywords

Mathematics Subject Classification (2010)

Navigation