Skip to main content
Log in

On the accurate evaluation of unsteady Stokes layer potentials in moving two-dimensional geometries

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Two fundamental difficulties are encountered in the numerical evaluation of time-dependent layer potentials. One is the quadratic cost of history dependence, which has been successfully addressed by splitting the potentials into two parts—a local part that contains the most recent contributions and a history part that contains the contributions from all earlier times. The history part is smooth, easily discretized using high-order quadratures, and straightforward to compute using a variety of fast algorithms. The local part, however, involves complicated singularities in the underlying Green’s function. Existing methods, based on exchanging the order of integration in space and time, are able to achieve high-order accuracy, but are limited to the case of stationary boundaries. Here, we present a new quadrature method that leaves the order of integration unchanged, making use of a change of variables that converts the singular integrals with respect to time into smooth ones. We have also derived asymptotic formulas for the local part that lead to fast and accurate hybrid schemes, extending earlier work for scalar heat potentials and applicable to moving boundaries. The performance of the overall scheme is demonstrated via numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpert, B.K.: Hybrid Gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20(5), 1551–1584 (1999)

    Article  MathSciNet  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Wetton, B.M.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput. 32(4), 1761–1788 (2010)

    Article  MathSciNet  Google Scholar 

  4. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 168(2), 464–499 (2001)

    Article  MathSciNet  Google Scholar 

  5. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  Google Scholar 

  6. Fabes, E.B., Lewis, J.E., Riviere, N.M.: Boundary value problems for the Navier-Stokes equations. Am. J. Math. 99, 626–668 (1977)

    Article  MathSciNet  Google Scholar 

  7. Fabes, E.B., Lewis, J.E., Riviere, N.M.: Singular integrals and hydrodynamic potentials. Am. J. Math. 99, 601–625 (1977)

    Article  MathSciNet  Google Scholar 

  8. Greengard, L., Jiang, S.: A new mixed potential representation for the equations of unsteady, incompressible flow. arXiv:1809.08442 (2018)

  9. Greengard, L., Lin, P.: Spectral approximation of the free-space heat kernel. Appl. Comput. Harmon. Anal. 9, 83–97 (2000)

    Article  MathSciNet  Google Scholar 

  10. Greengard, L., Strain, J.: A fast algorithm for the evaluation of heat potentials. Comm. Pure Appl. Math. 43, 949–963 (1990)

    Article  MathSciNet  Google Scholar 

  11. Guenther, R.B., Thomann, E.A.: Fundamental solutions of Stokes and Oseen problem in two spatial dimensions. J. Math. Fluid Mech. 9, 489–505 (2007)

    Article  MathSciNet  Google Scholar 

  12. Helsing, J.: A fast and stable solver for singular integral equations on piecewise smooth curves. SIAM J. Sci. Comput. 33(1), 153–174 (2011)

    Article  MathSciNet  Google Scholar 

  13. Helsing, J., Ojala, R.: Corner singularities for elliptic problems: integral equations, graded meshes, quadrature, and compressed inverse preconditioning. J. Comput. Phys. 227(20), 8820–8840 (2008)

    Article  MathSciNet  Google Scholar 

  14. Henshaw, W.D.: A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grids. J. Comput. Phys. 113, 13–25 (1994)

    Article  MathSciNet  Google Scholar 

  15. Jiang, S., Veerapaneni, S., Greengard, L.: Integral equation methods for unsteady Stokes flow in two dimensions. SIAM J. Sci. Comput. 34(4), A2197–A2219 (2012)

    Article  MathSciNet  Google Scholar 

  16. Karniadakis, G.E., Beskok, A., Aluru, N.: Microflows and Nanoflows. Springer, New York (2005)

    MATH  Google Scholar 

  17. Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Dover, New York (2005)

    Google Scholar 

  18. Kolm, P., Rokhlin, V.: Numerical quadratures for singular and hypersingular integrals. Comput. Math. Appl. 41(3–4), 327–352 (2001)

    Article  MathSciNet  Google Scholar 

  19. Kress, R.: Linear Integral Equations Applied Mathematical Sciences, 3rd edn., vol. 82. Springer, Berlin (2014)

    Book  Google Scholar 

  20. Li, J., Greengard, L.: High order accurate methods for the evaluation of layer heat potentials. SIAM J. Sci. Comput. 31, 3847–3860 (2009)

    Article  MathSciNet  Google Scholar 

  21. Lin, P.: On the Numerical Solution of the Heat Equation in Unbounded Domains. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University New York (1993)

  22. Liu, J.G., Liu, J., Pego, R.L.: Stable and accurate pressure approximation for unsteady incompressible viscous flow. J. Comput. Phys. 229(9), 3428–3453 (2010)

    Article  MathSciNet  Google Scholar 

  23. Ma, J., Rokhlin, V., Wandzura, S.: Generalized Gaussian quadrature rules for systems of arbitrary functions. SIAM J. Numer. Anal. 33(3), 971–996 (1996)

    Article  MathSciNet  Google Scholar 

  24. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  25. Shen, Z.: Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders. Am. J. Math. 113, 293–373 (1991)

    Article  Google Scholar 

  26. Temam, R.: Sur l’approximation de la solution des equations de Navier-Stokes par la methode des fractionnarires II. Arch. Rational Mech. Anal. 33, 377–385 (1969)

    Article  MathSciNet  Google Scholar 

  27. Wang, J.: Integral Equation Methods for the Heat Equation in Moving Geometry. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University New York (2017)

  28. Wang, J., Greengard, L.: Hybrid asymptotic/numerical methods for the evaluation of layer heat potentials in two dimensions. Adv. Comput. Math accepted (2018)

  29. Yarvin, N., Rokhlin, V.: Generalized Gaussian quadratures and singular value decompositions of integral operators. SIAM J. Sci. Comput. 20(2), 699–718 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Funding

S. Jiang was supported by the National Science Foundation under grant DMS-1720405 and by the Flatiron Institute, a division of the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Greengard.

Additional information

Communicated by: Gunnar J Martinsson

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greengard, L., Jiang, S. & Wang, J. On the accurate evaluation of unsteady Stokes layer potentials in moving two-dimensional geometries. Adv Comput Math 46, 17 (2020). https://doi.org/10.1007/s10444-020-09760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09760-8

Keywords

Mathematics Subject Classification (2010)

Navigation