Skip to main content
Log in

Analysis of the decoupled and positivity-preserving DDFV schemes for diffusion problems on polygonal meshes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose and analyze a family of decoupled and positivity-preserving discrete duality finite volume (DDFV) schemes for diffusion problems on general polygonal meshes. These schemes are further extensions of the scheme in Su et al. (J. Comput. Phys.372, 773–798, 2018) and share some benefits. First, the two sets of finite volume (FV) equations are constructed for the vertex-centered and cell-centered unknowns, respectively, and these two sets of equations can be solved in a decoupled way. Second, unlike most existing nonlinear positivity-preserving schemes, nonlinear iteration methods are not required for linear problems and the nonlinear solver can be selected unrestrictedly for nonlinear problems. Moreover, the positivity and well-posedness of the solution can be analyzed rigorously for linear problems. Under some weak geometric assumptions, the stability and error estimate results for the vertex-centered unknowns are obtained. Since the present DDFV schemes and the pure vertex-centered scheme in Wu et al. (Int. J. Numer. Meth. Fluids81(3), 131–150, 2016) share the same FV equations for the vertex-centered unknowns, this part itself can also serve as an analysis for the scheme in Wu et al. (Int. J. Numer. Meth. Fluids81(3), 131–150, 2016). Furthermore, by assuming the coercivity of the FV equations for the cell-centered unknowns, a first-order H1 error estimate is obtained for the cell-centered unknowns through the analysis of residual errors. Numerical experiments demonstrate both the accuracy and the positivity of discrete solutions on general grids. The efficiency of the Newton method is emphasized by comparison with the fixed-point method, which illustrates the advantage of our schemes when dealing with nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolov Spaces. Academic Press, New York (1975)

    Google Scholar 

  2. Agelas, L., Pietro, D., Droniou, J.: The G method for heterogeneous anisotropic diffusion on general meshes. ESAIM:M2AN 44, 597–625 (2010)

    Article  MathSciNet  Google Scholar 

  3. Blanc, X., Labourasse, E.: A positive scheme for diffusion problems on deformed meshes. Z. Angew. Math. Mech. 96(6), 660–680 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM:M2AN 48(2), 553–581 (2014)

    Article  MathSciNet  Google Scholar 

  5. Brezzi, F., Buffa, A., Lipnikov, K.: Mimetic finite differences for elliptic problems. ESAIM:M2AN 43(2), 277–295 (2009)

    Article  MathSciNet  Google Scholar 

  6. Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15, 1533–1551 (2005)

    Article  MathSciNet  Google Scholar 

  7. Camier, J., Hermeline, F.: A monotone nonlinear finite volume method for approximating diffusion operators on general meshes. Int. J. Numer. Meth. Engng. 107(6), 496–519 (2016)

    Article  MathSciNet  Google Scholar 

  8. Cancès, C., Cathala, M., Le Potier, C.: Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations. Numer. Math. 125(3), 387–417 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cancès, C., Guichard, C.: Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comp. 85(298), 549–580 (2016)

    Article  MathSciNet  Google Scholar 

  10. Coudiére, Y., Vila, J., Villedieu, P.: Convergence rate of a finite volume scheme for a two-dimensional diffusion convection problem. ESAIM:M2AN 33, 493–516 (1999)

    Article  Google Scholar 

  11. Després, B.: Non linear schemes for the heat equation in 1d. ESAIM: M2AN 48(1), 107–134 (2014)

    Article  MathSciNet  Google Scholar 

  12. Droniou, J., Le Potier, C.: Construction and convergence study of schemes preserving the elliptic local maximum principle. SIAM J. Numer. Anal. 49(2), 459–490 (2011)

    Article  MathSciNet  Google Scholar 

  13. Domelevo, K., Omnes, P.: A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM-math. Model. Num. Anal. 39(6), 1203–1249 (2005)

    Article  MathSciNet  Google Scholar 

  14. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. VII, Handb. Numer. Anal., VII, North-Holland Amsterdam, pp 713–1020 (2000)

  15. Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Finite Volumes for Complex Applications V, pp 659–692. Wiley, New York (2008)

  16. Hermeline, F.: Une méthode de volumes finis pour les équations elliptiques du second ordre. C. R. Acad. Sci. Paris Ser. I Math. 326(12), 1433–1436 (1998)

    Article  MathSciNet  Google Scholar 

  17. Hermeline, F.: A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160(2), 481–499 (2000)

    Article  MathSciNet  Google Scholar 

  18. Huang, W., Kappen, A.M.: A Study of Cell-Center Finite Volume Methods for Diffusion Equations. University of Kansas, Mathematics Research Report (1998)

    Google Scholar 

  19. Keilegavlen, E., Nordbotten, J.M., Aavatsmark, I.: Sufficient criteria are necessary for monotone control volume methods. Appl. Math. Lett. 22(8), 1178–1180 (2009)

    Article  MathSciNet  Google Scholar 

  20. Le Potier, C.: Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés. C. R. Acad. Sci. Paris, Ser. I 340(12), 787–792 (2005)

    Article  Google Scholar 

  21. Le Potier, C., Mahamane, A.: A nonlinear correction and maximum principle for diffusion operators with hybrid schemes. C. R. Acad. Sci. Paris, Ser. I 350, 101–106 (2012)

    Article  Google Scholar 

  22. Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227(1), 492–512 (2007)

    Article  MathSciNet  Google Scholar 

  23. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comput. Phys. 228(3), 703–716 (2009)

    Article  MathSciNet  Google Scholar 

  24. Nordbotten, J.M., Aavatsmark, I., Eigestad, G.T.: Monotonicity of control volume methods. Numer. Math. 106(2), 255–288 (2007)

    Article  MathSciNet  Google Scholar 

  25. Le Potier, C.: A nonlinear correction and local minimum principle for diffusion operators with finite differences. C. R. Acad. Sci. Paris, Ser. I 356(1), 100–106 (2018)

    Article  Google Scholar 

  26. Schnerder, M., Agélas, L., Enchéry, G., Flemisch, B.: Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes. J. Comput. Phys. 351, 80–107 (2017)

    Article  MathSciNet  Google Scholar 

  27. Su, S., Dong, Q., Wu, J.: A decoupled and positivity-preserving discrete duality finite volume scheme for anisotropic diffusion problems on general polygonal meshes. J. Comput. Phys. 372, 773–798 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wu, J.: Vertex-centered linearity-preserving schemes for nonlinear parabolic problems on polygonal grids. J. Sci. Comput. 71, 499–524 (2017)

    Article  MathSciNet  Google Scholar 

  29. Wu, J., Dai, Z., Gao, Z., Yuan, G.: Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes. J. Comput. Phys. 229, 3382–3401 (2010)

    Article  MathSciNet  Google Scholar 

  30. Wu, J., Gao, Z., Dai, Z.: A vertex-centered linearity-preserving discretization of diffusion problems on polygonal meshes. Int. J. Numer. Meth. Fluids 81(3), 131–150 (2016)

    Article  MathSciNet  Google Scholar 

  31. Yin, L., Wu, J., Gao, Z.: The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids. ESAIM: M2AN 49(1), 193–220 (2015)

    Article  MathSciNet  Google Scholar 

  32. Zhang, X., Su, S., Wu, J.: A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids. J. Comput. Phys. 344, 419–436 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their careful readings and useful suggestions.

Funding

This work was partially supported by the National Natural Science Foundation of China (No. 11871009), China Postdoctoral Science Foundation (No. BX20190013), and CAEP Foundation (No. CX2019028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Wu.

Additional information

Communicated by: Aihui Zhou

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Su, S. & Wu, J. Analysis of the decoupled and positivity-preserving DDFV schemes for diffusion problems on polygonal meshes. Adv Comput Math 46, 12 (2020). https://doi.org/10.1007/s10444-020-09748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09748-4

Keywords

Mathematics Subject Classification (2010)

Navigation