Skip to main content
Log in

Low Mach number limit of multidimensional steady flows on the airfoil problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we justify the low Mach number limit of the steady irrotational Euler flows for the airfoil problem, which is the first result for the low Mach number limit of the steady Euler flows in an exterior domain. The uniform estimates on the compressibility parameter \(\varepsilon \), which is singular for the flows, are established via a variational approach based on the compressible–incompressible difference functions. The limit is on the Hölder space and is unique. Moreover, the convergence rate is of order \(\varepsilon ^2\). It is noticeable that, due to the feature of the airfoil problem, the extra force dominates the asymptotic decay rate of the compressible flow to the infinity. And the effect of extra force vanishes in the limiting process from compressible flows to the incompressible ones, as the Mach number goes to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alazard, T.: Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Differ. Equ. 10(1), 19–44 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Bers, L.: Existence and uniqueness of a subsonic flow past a given profile. Commun. Pure Appl. Math. 7, 441–504 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, G.-Q., Christoforou, C., Zhang, Y.: Continuous dependence of entropy solutions to the Euler equations on the adiabatic exponent and Mach number. Arch. Ration. Mech. Anal. 189(1), 97–130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, G.-Q., Huang, F.-M., Wang, T.-Y., Xiang, W.: Incompressible limit of solutions of multidimensional steady compressible euler equations. Z. Angew. Math. Phys. 67–75 (2016)

  5. Chen, G.-Q., Huang, F.-M., Wang, T.-Y., Xiang, W.: Steady Euler flows with large vorticity and characteristic discontinuities in arbitrary infinitely long nozzles. Adv. Math. 346, 946–1008 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, J., Du, L., Xiang, W.: Incompressible Réthy flows in two dimensions. SIAM J. Math. Anal. 49, 3427–3475 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, X., Wang, T.-Y., Xiang, W.: Three-dimensional full Euler flows with nontrivial swirl in axisymmetric nozzles. SIAM J. Math. Anal. 50(3), 2740–2772 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, G.-C., Ou, B.: Subsonic flows around a body in space. Commun. Partial Differ. Equ. 18(1–2), 355–379 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ebin, D.: The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 141–200 (1977)

  10. Elling, V.: Nonexistence of low-mach irrotational inviscid flows around polygons. J. Differ. Equ. 262, 2705–2721 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fang, B., Xiang, W.: The uniqueness of transonic shocks in supersonic flow past a 2-D wedge. J. Math. Anal. Appl. 437, 194–213 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Finn, R., Gilbarg, D.: Asymptotic behavior and uniqueness of plane subsonic flows. Commun. Pure Appl. Math. 10, 23–63 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  13. Finn, R., Gilbarg, D.: Three-dimensional subsonic flows and asymptotic estimates for elliptic partial differential equations. Acta Math. 98, 265–296 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feireisl, E., Novotny, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  15. Frankl, F., Keldysh, M.: Die äussere neumann’she aufgabe für nichtlineare elliptische differentialgleichungen mit anwendung auf die theorie der flugel im kompressiblen gas. Bull. Acad. Sci. 12, 561–697 (1934)

    MATH  Google Scholar 

  16. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1983)

    Book  MATH  Google Scholar 

  17. Gu, X., Wang, T.-Y.: On subsonic and subsonic-sonic flows in the infinity long nozzle with general conservatives force. Acta Math. Sci. 37, 752–767 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gu, X., Wang, T.-Y.: On subsonic and subsonic-sonic flows with general conservatives force in exterior domains, Accepted by Acta Mathematicae Applicatae Sinica. Preprint: arXiv:2001.09300

  19. Isozaki, H.: Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381, 1–36 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Jiang, S., Ju, Q., Li, F.: Incompressible limit of the non-isentropic ideal magnetohydrodynamic equations. SIAM J. Math. Anal. 48(1), 302–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, S., Ju, Q., Li, F., Xin, Z.-P.: Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data. Adv. Math. 259, 384–420 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klainerman, S., Majda, A.: Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MATH  Google Scholar 

  23. Klainerman, S., Majda, A.: Compressible and incompressible fluids. Commun. Pure Appl. Math. 35, 629–653 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, M., Wang, T.-Y., Xiang, W.: Low mach number limit of steady Euler flows in multi-dimensional nozzles. Accepted by: Commun. Math Sci. Preprint: arXiv:1901.01048

  25. Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, G., Ou, B.: A poincare inequality on \(R^n\) and its application to potential fluid flows in space. Commun. Appl. Nonlinear Anal. 12(1), 1–24 (2005)

    MATH  Google Scholar 

  27. Masmoudi, N.: Incompressible, inviscid limit of the compressible Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2), 199–224 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Masmoudi, N.: Examples of singular limits in hydrodynamics. Handb. Differ. Equ. Evol. Equ. 3, 195–275 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158(1), 61–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ou, B.: An irrotational and incompressible flow around a body in space. J. PDEs 7(2), 160–170 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Payne, L., Weinberger, H.: Note on a lemma of Finn and Gilbarg. Acta Math. 98, 297–299 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qu, A., Xiang, W.: Three-dimensional steady supersonic Euler flow past a concave cornered wedge with lower pressure at the downstream. Arch. Ration. Meth. Anal. 228, 431–476 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schiffer, M.: Analytical theory of subsonic and supersonic flows. In: Handbuch der Physik, pp. 1–161. Springer, Berlin (1960)

  34. Schochet, S.: The mathematical theory of low Mach number flows. ESAIM Math. Model. Numer. Anal. 39(03), 441–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shiffman, M.: On the existence of subsonic flows of a compressible fluid. J. Ration. Mech. Anal. 1, 605–652 (1952)

    MathSciNet  MATH  Google Scholar 

  36. Ukai, S.: The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26, 323–331 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Van Dyke, M.: Perturbation Methods in Fluid Mechanics, vol. 964. Academic Press, New York (1964)

    MATH  Google Scholar 

  38. Xiang, W., Zhang, Y., Zhao, Q.: Two-dimensional steady supersonic exothermically reacting Euler flows with strong contact discontinuity over a Lipschitz wall. Interfaces Free Boundaries 20(3), 437–481 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Song Jiang for valuable suggestions. The research of Mingjie Li is supported by the NSFC Grant No. 11671412. The research of Tian-Yi Wang was supported in part by the NSFC Grant Nos. 11601401 and 11971024 and the Fundamental Research Funds for the Central Universities(WUT: 2017 IVA 072 and 2017 IVB 066). The research of Wei Xiang was supported in part by the Grants Council of the HKSAR, China (Project Nos. CityU 21305215, CityU 11332916, CityU 11304817 and CityU 11303518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yi Wang.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, TY. & Xiang, W. Low Mach number limit of multidimensional steady flows on the airfoil problem. Calc. Var. 59, 68 (2020). https://doi.org/10.1007/s00526-020-1720-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1720-z

Mathematics Subject Classification

Navigation