Skip to main content
Log in

Relaxation of a scalar nonlocal variational problem with a double-well potential

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider nonlocal variational problems in \(L^p\), like those that appear in peridynamics, where the functional object of the study is given by a double integral. It is known that convexity of the integrand implies the lower semicontinuity of the functional in the weak topology of \(L^p\). If the integrand is not convex, a usual approach is to compute the relaxation, which is the lower semicontinuous envelope in the weak topology. In this paper we compute such a relaxation for a scalar problem with a double-well integrand. The relaxation is non-trivial, and, contrary to the local case, it cannot be represented as a double integral, as the original problem. Nonetheless, we show that, as for the local case, the relaxation can be expressed in terms of the energy of a suitable truncation of the considered function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aksoylu, B., Mengesha, T.: Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31(12), 1301–1317 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alberti, G., Bellettini, G.: A nonlocal anisotropic model for phase transitions. I. The optimal profile problem. Math. Ann. 310(3), 527–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.: A nonlocal \(p\)-Laplacian evolution equation with Neumann boundary conditions. J. Math. Pures Appl. (9) 90(2), 201–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  5. Artstein, Z.: Variational limits constrained by measure-valued multifunctions. In: Calculus of Variations and Optimal Control (Haifa, 1998). Chapman & Hall/CRC Research Notes in Mathematics, vol. 411, pp. 1–23. Chapman & Hall/CRC, Boca Raton (2000)

  6. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. MPS/SIAM Series on Optimization, vol. 6. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  7. Balder, E.J.: Lectures on Young measure theory and its applications in economics, pp. 1–69 (2000). In: Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1997)

  8. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100(1), 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bartels, S., Kružík, M.: An efficient approach to the numerical solution of rate-independent problems with nonconvex energies. Multiscale Model. Simul. 9(3), 1276–1300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellido, J.C., Mora-Corral, C.: Existence for nonlocal variational problems in peridynamics. SIAM J. Math. Anal. 46(1), 890–916 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bellido, J.C., Mora-Corral, C.: Lower semicontinuity and relaxation via Young measures for nonlocal variational problems and applications to peridynamics. SIAM J. Math. Anal. 50, 779–809 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bevan, J., Pedregal, P.: A necessary and sufficient condition for the weak lower semicontinuity of one-dimensional non-local variational integrals. Proc. R. Soc. Edinb. Sect. A 136(4), 701–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boulanger, J., Elbau, P., Pontow, C., Scherzer, O.: Non-local functionals for imaging. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications, vol. 49, pp. 131–154. Springer, New York (2011)

  14. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, pp. 439–455. IOS Press, Amsterdam (2001)

    Google Scholar 

  15. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s, p}\) when \(s\uparrow 1\) and applications. J. Anal. Math. 87, 77–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  17. Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics Series, vol. 207. Longman Scientific & Technical, Harlow (1989)

    MATH  Google Scholar 

  18. Carstensen, C., Roubíček, T.: Numerical approximation of Young measures in non-convex variational problems. Numer. Math. 84(3), 395–415 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Castellanos, J., Muñoz, J.: Some aspects of the existence of minimizers for a nonlocal integral functional in dimension one. SIAM J. Control Optim. 48(6), 3838–3858 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elbau, P.: Sequential lower semi-continuity of non-local functionals. http://arxiv.org/abs/1104.2686 (Preprint)

  21. Fife, P.: Some nonclassical trends in parabolic and parabolic-like evolutions. In: Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

  22. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) Spaces. Springer Monographs in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  23. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hurri-Syrjänen, R., Vähäkangas, A.V.: On fractional Poincaré inequalities. J. Anal. Math. 120, 85–104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kreisbeck, C., Zappale, E.: Loss of double-integral character during relaxation. http://arxiv.org/abs/1907.13180 (Preprint)

  26. Kreisbeck, C., Zappale, E.: Lower semicontinuity and relaxation of nonlocal \({L}^{\infty }\)-functionals. http://arxiv.org/abs/1905.08832 (Preprint)

  27. Kružík, M., Roubíček, T.: Weierstrass-type maximum principle for microstructure in micromagnetics. Z. Anal. Anwend. 19(2), 415–428 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Müller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer, Berlin (1999)

  29. Muñoz, J.: On some necessary conditions of optimality for a nonlocal variational principle. SIAM J. Control Optim. 38(5), 1521–1533 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pedregal, P.: Nonlocal variational principles. Nonlinear Anal. 29(12), 1379–1392 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pedregal, P.: Parametrized Measures and Variational Principles. Progress in Nonlinear Differential Equations and their Applications, vol. 30. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  32. Pedregal, P.: Equilibrium conditions for Young measures. SIAM J. Control Optim. 36(3), 797–813 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pedregal, P.: Weak lower semicontinuity and relaxation for a class of non-local functionals. Rev. Mat. Complut. 29(3), 485–495 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ponce, A.C.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. 6(1), 1–15 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Roubíček, T.: Relaxation in Optimization Theory and Variational Calculus. De Gruyter Series in Nonlinear Analysis and Applications, vol. 4. Walter de Gruyter & Co., Berlin (1997)

    Book  MATH  Google Scholar 

  36. Roubíček, T.: Optimality conditions for nonconvex variational problems relaxed in terms of Young measures. Kybernetika (Prague) 34(3), 335–347 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Valadier, M.: Young measures. In: Methods of nonconvex analysis (Varenna, 1989). Lecture Notes in Mathematics, vol. 1446, pp. 152–188. Springer, Berlin (1990)

  39. Valadier, M.: A course on Young measures. Rend. Istit. Mat. Univ. Trieste 26(suppl.), 349–394 (1995) (1994). In: Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tellini.

Additional information

Communicated by J. Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported by the Spanish Ministry of Economy and Competitivity through Project MTM2017-85934-C3-2-P (C.M.-C.) and Project PGC2018-097104-B-100 and Juan de la Cierva Incorporation fellowship IJCI-2015-25084 (A.T.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora-Corral, C., Tellini, A. Relaxation of a scalar nonlocal variational problem with a double-well potential. Calc. Var. 59, 67 (2020). https://doi.org/10.1007/s00526-020-1728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1728-4

Mathematics Subject Classification

Navigation