Skip to main content
Log in

Uniqueness of positive solutions with concentration for the Schrödinger–Newton problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We are concerned with the following Schrödinger–Newton problem

$$\begin{aligned} -\varepsilon ^2\Delta u+V(x)u=\frac{1}{8\pi \varepsilon ^2} \left( \int _{\mathbb {R}^3}\frac{u^2(\xi )}{|x-\xi |}d\xi \right) u,~x\in {\mathbb {R}}^3. \end{aligned}$$

For \(\varepsilon \) small enough, we show the uniqueness of positive solutions concentrating at the nondegenerate critical points of V(x). The main tools are a local Pohozaev type of identity, blow-up analysis and the maximum principle. Our results also show that the asymptotic behavior of concentrated points to Schrödinger–Newton problem is quite different from those of Schrödinger equations, which is mainly caused by the nonlocal term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penrose, R.: Quantum computation, entanglement and state reduction. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356, 1927–1939 (1998)

    Article  MathSciNet  Google Scholar 

  2. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/1977)

  3. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  Google Scholar 

  4. Menzala, G.P.: On regular solutions of a nonlinear equation of Choquard’s type. Proc. R. Soc. Edinburgh Sect. A 86, 291–301 (1980)

    Article  MathSciNet  Google Scholar 

  5. Tod, P., Moroz, I.M.: An analytical approach to the Schrödinger–Newton equations. Nonlinearity 12, 201–216 (1999)

    Article  MathSciNet  Google Scholar 

  6. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys. 50, 012905 (2009)

    Article  MathSciNet  Google Scholar 

  7. Lieb, E., Loss, M.: Analysis, 2nd edn. In: Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, RI (2001)

  8. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  9. Cingolani, S., Secchi, S., Squassina, M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinburgh Sect. A 140, 973–1009 (2010)

    Article  Google Scholar 

  10. Secchi, S.: A note on Schrödinger–Newton systems with decaying electric potential. Nonlinear Anal. 72, 3842–3856 (2010)

    Article  MathSciNet  Google Scholar 

  11. Vaira, G.: Existence of bound states for Schrödinger–Newton type systems. Adv. Nonlinear Stud. 13, 495–516 (2013)

    Article  MathSciNet  Google Scholar 

  12. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  13. Moroz, V., Van Schaftingen, J.: Existence of ground states for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  Google Scholar 

  14. Cao, D., Heinz, H.P.: Uniqueness of positive multi-bump bound states of nonlinear Schrödinger equations. Math. Z. 243, 599–642 (2003)

    Article  MathSciNet  Google Scholar 

  15. Cao, D., Li, S., Luo, P.: Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 4037–4063 (2015)

    Article  Google Scholar 

  16. Dancer, E.N.: On the uniqueness of the positive solution of a singularly perturbed problem. Rocky Mountain J. Math. 25, 957–975 (1995)

    Article  MathSciNet  Google Scholar 

  17. Deng, Y., Lin, C.S., Yan, S.: On the prescribed scalar curvature problem in \({\mathbb{R}}^N\), local uniqueness and periodicity. J. Math. Pures Appl. 104, 1013–1044 (2015)

    Article  MathSciNet  Google Scholar 

  18. Glangetas, L.: Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent. Nonlinear Anal. 20, 571–603 (1993)

    Article  MathSciNet  Google Scholar 

  19. Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Lineaire 19, 261–280 (2002)

    Article  MathSciNet  Google Scholar 

  20. Guo, Y., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. Lond. Math. Soc. (3) 114(6), 1005–1043 (2017)

    Article  MathSciNet  Google Scholar 

  21. Xiang, C.: Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions. Calc. Var. Partial Differ. Equ. 55, 55–134 (2016)

    Article  MathSciNet  Google Scholar 

  22. Li, G., Peng, S., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system. Commun. Contemp. Math. 12, 1069–1092 (2010)

    Article  MathSciNet  Google Scholar 

  23. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  Google Scholar 

  24. Bahri, A., Coron, J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253–294 (1988)

    Article  MathSciNet  Google Scholar 

  25. Cao, D., Peng, S.: Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity. Commun. Partial Differ. Equ. 34, 1566–1591 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Peng Luo and Shuangjie Peng were supported by the Key Project of NSFC (No.11831009). Shuangjie Peng and Chunhua Wang were supported by NSFC Grant (No.11671162). Peng Luo was also supported by NSFC Grants (Nos. 11701204, 11771167) and the China Scholarship Council. At the same time, the authors express their sincere thanks to the anonymous referees for the invaluable suggestions which considerably improved the presentations of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Luo.

Additional information

Communicated by F. H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Some basic estimates

Lemma A.1

(Hardy–Littlewood–Sobolev inequality, c.f. [7]) Let \(p,r>1, 0<\lambda <3\), \(\frac{1}{p}+\frac{1}{r}+\frac{\lambda }{3}=2\), \(f\in L^p(\mathbb {R}^3)\), \(h\in L^r(\mathbb {R}^3)\), then there exists \(C(\lambda ,p)>0\) such that

$$\begin{aligned} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3}f(x)|x-y|^{-\lambda }h(y)dxdy \le C(\lambda ,p)\Vert f\Vert _{L^p(\mathbb {R}^3)}\Vert g\Vert _{L^r(\mathbb {R}^3)}. \end{aligned}$$
(A.1)

Lemma A.2

(Nash–Moser iteration, c.f. Theorem 8.17 in [23]) If \(u\in H^1(\mathbb {R}^3)\) is the solution of \(-\Delta u=f(x)\) in \(\mathbb {R}^3\) and \(f\in L^{q/2}(\mathbb {R}^3)\) for some \(q>3\), then for any ball \(B_{2R}(y)\subset \mathbb {R}^3\) and \(p>1\), there exists \(C=C(p,q)\) such that

$$\begin{aligned} \sup _{B_R(y)}u(x)\le C\big (R^{-3/p}\Vert u\Vert _{L^2(B_{2R}(y))}+R^{2(1-3/q)}\Vert f\Vert _{L^{q/2}(\mathbb {R}^3)}\big ). \end{aligned}$$

Lemma A.3

(Decomposition lemma, c.f. [24] or Lemma A.1 in [14]) For \(u(x)\in H_\varepsilon \), if there exist \(\delta _0>0\), \(\varepsilon _0>0\) such that

$$\begin{aligned} \left\| u-\sum ^k_{j=1}U_{a_j} \left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) \right\| _\varepsilon \le \delta _0 \varepsilon ^3,~\text{ and }~|x_{j,\varepsilon }-a_j|\le \delta ,~\text{ for } \text{ all }~\delta \in (0,\delta _0]~\text{ and }~\varepsilon \in (0,\varepsilon _0], \end{aligned}$$

then for all \( \delta \in (0,\delta _0]\) and \(\varepsilon \in (0,\varepsilon _0]\), the following minimization problem

$$\begin{aligned} \inf \left\{ \varepsilon ^{-3}\left\| u-\sum ^k_{j=1}U_{a_j} \left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) \right\| _\varepsilon ; ~x_{j,\varepsilon }\in B_{4\delta }(a_j)\right\} \end{aligned}$$

has a unique solution which can be written as

$$\begin{aligned} u=\sum ^k_{j=1}\alpha _{j,\varepsilon } U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) +v_\varepsilon (x), \end{aligned}$$

where \(|\alpha _{j,\varepsilon }-1|\le 2\delta \), \(v_\varepsilon \in \bigcap ^k_{j=1}E_{\varepsilon ,a_j,x_{j,\varepsilon }}\) and

$$\begin{aligned} \begin{aligned} E_{\varepsilon ,a_j,x_{j,\varepsilon }}&=\left\{ u(x)\in H_\varepsilon : \left( u(x),U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) \right) _{\varepsilon }=0,\right. \\&\left. \quad ~\left( u(x),\frac{\partial {U_{a_j}\big (\frac{x-x_{j,\varepsilon }}{\varepsilon }\big )}}{\partial {x^i}}\right) _{\varepsilon }=0, ~i=1,2,3 \right\} . \end{aligned} \end{aligned}$$

Lemma A.4

Suppose \(f_{\varepsilon }\in L^1({\mathbb {R}^3})\cap C(\mathbb {R}^3)\), for any fixed small \({\bar{d}}>0\) independent of \(\varepsilon \) and \(x_{\varepsilon }\), there exists a small constant \(d_\varepsilon \in ({\bar{d}},2{\bar{d}})\) such that

$$\begin{aligned} \int _{\partial B_{d_\varepsilon }(x_{\varepsilon })}|f_{\varepsilon }(x)|d\sigma \le \frac{1}{{\bar{d}}} \int _{\mathbb {R}^3}|f_{\varepsilon }(x)|dx. \end{aligned}$$
(A.2)

Proof

First, for any fixed small \({\bar{d}}>0\) and \(x_{\varepsilon }\), it holds

$$\begin{aligned} \int ^{2{\bar{d}}}_{{\bar{d}}}\int _{\partial B_{r}(x_{\varepsilon })}|f_{\varepsilon }(x)|d\sigma dr= \int _{B_{2{\bar{d}}}(x_{\varepsilon })\setminus B_{{\bar{d}}}(x_{\varepsilon })}|f_{\varepsilon }(x)|dx\le \int _{\mathbb {R}^3}|f_{\varepsilon }(x)|dx. \end{aligned}$$
(A.3)

Also \(\int _{\partial B_{r}(x_{\varepsilon })}|f_{\varepsilon }(x)|d\sigma \) is continuous with respect to r. By mean value theorem of integrals, there exists \(d_\varepsilon \in ({\bar{d}},2{\bar{d}})\) such that

$$\begin{aligned} \int ^{2{\bar{d}}}_{{\bar{d}}}\int _{\partial B_{r}(x_{\varepsilon })}|f_{\varepsilon }(x)|d\sigma dr= d_\varepsilon \int _{\partial B_{r}(x_{\varepsilon })}|f_{\varepsilon }(x)|d\sigma . \end{aligned}$$
(A.4)

Then (A.3) and (A.4) imply (A.2). \(\square \)

Lemma A.5

For any \(u_1,u_2,u_3,u_4\in H_{\varepsilon }\) and \(0<\lambda \le 2\), then

$$\begin{aligned} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3}u_1(\xi )u_2(\xi )u_3(x)u_4(x)\cdot {|x-\xi |^{-\lambda }}d\xi dx\le C\varepsilon ^{-\lambda }\Vert u_1\Vert _{\varepsilon }\Vert u_2\Vert _{\varepsilon }\Vert u_3\Vert _{\varepsilon }\Vert u_4\Vert _{\varepsilon }. \end{aligned}$$
(A.5)

Proof

First, by Hardy–Littlewood–Sobolev inequality in Lemma A.1, we have

$$\begin{aligned} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3}u_1(\xi )u_2(\xi )u_3(x)u_4(x)\cdot {|x-\xi |^{-\lambda }}d\xi dx \le C \Vert u_1\cdot u_2\Vert _{L^{\frac{6}{6-\lambda }}(\mathbb {R}^3)} \cdot \Vert u_3\cdot u_4\Vert _{L^{\frac{6}{6-\lambda }}(\mathbb {R}^3)}. \end{aligned}$$
(A.6)

Next, for \(0<\lambda \le 2\), by Hölder’s inequality and Sobolev embedding, we get

$$\begin{aligned} \begin{aligned} \Vert u_1\cdot u_2\Vert _{L^{\frac{6}{6-\lambda }}(\mathbb {R}^3)}&\le \Vert u_1\Vert _{L^2(\mathbb {R}^3)}\Vert u_2\Vert _{L^{\frac{6}{3-\lambda }}(\mathbb {R}^3)}\le \Vert u_1\Vert _{\varepsilon }\Vert u_2\Vert ^{{\frac{3(2-\lambda )}{6}}}_{L^2(\mathbb {R}^3)}\Vert u_2\Vert ^{{\frac{\lambda }{2}}}_{L^6(\mathbb {R}^3)}\\&\le \varepsilon ^{-\frac{\lambda }{2}}\Vert u_1\Vert _{\varepsilon }\Vert u_2\Vert _{\varepsilon }. \end{aligned} \end{aligned}$$
(A.7)

Similarly, for \(0<\lambda \le 2\), we have

$$\begin{aligned} \Vert u_3\cdot u_4\Vert _{L^{\frac{6}{6-\lambda }}(\mathbb {R}^3)}\le \varepsilon ^{-\lambda /2}\Vert u_3\Vert _{\varepsilon }\Vert u_4\Vert _{\varepsilon }. \end{aligned}$$
(A.8)

Then (A.6), (A.7) and (A.8) imply (A.5). \(\square \)

Lemma A.6

For any \(u_1,u_2,u_3,u_4\in H^1(\mathbb {R}^3)\), and \(0<\lambda \le 2\), then

$$\begin{aligned} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3}\frac{u_1(\xi )u_2(\xi )u_3(x)u_4(x)}{|x-\xi |^{\lambda }}d\xi dx\le C\Vert u_1\Vert _{H^1(\mathbb {R}^3)}\Vert u_2\Vert _{H^1(\mathbb {R}^3)}\Vert u_3\Vert _{H^1(\mathbb {R}^3)}\Vert u_4\Vert _{H^1(\mathbb {R}^3)}. \end{aligned}$$
(A.9)

Proof

Similar to the proof of Lemma A.5, we can obtain (A.9) by Hardy-Littlewood-Sobolev inequality, Hölder’s inequality and Sobolev embedding. \(\square \)

Lemma A.7

(1) There exist two positive constants \(d_1\) and \(\eta \) such that, for \(~j=1,2,\ldots ,k\),

$$\begin{aligned} U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) =O(e^{-\eta /\varepsilon }), ~\text{ for }~ x\in \mathbb {R}^3\backslash B_{d}(x_{j,\varepsilon }),~\text{ and }~0<d<d_1. \end{aligned}$$
(A.10)

(2) Let \(\{a_1,\ldots ,a_k\}\subset \mathbb {R}^3\) be the different nondegenerate critical points of V(x) with \(k\ge 1\), then it holds

$$\begin{aligned} \int _{\mathbb {R}^3}\big (V(a_j)-V(x)\big )U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) u(x)dx=O\big (\varepsilon ^{7/2}+\varepsilon ^ {3/2}|x_{j,\varepsilon }-a_j|^2\big )\Vert u\Vert _{\varepsilon }, \end{aligned}$$
(A.11)

and

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^3}\frac{\partial V(x)}{\partial x^i}U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) u(x)dx= O\big (\varepsilon ^{5/2}+\varepsilon ^ {3/2}|x_{j,\varepsilon }-a_j|\big )\Vert u\Vert _{\varepsilon }, \end{aligned} \end{aligned}$$
(A.12)

where \(u(x)\in H_{\varepsilon }\) and \(j=1,2,\ldots ,k\).

Proof

First, the exponential decay of \(U_{a_j}(x)\) implies (A.10). Next, since \(a_j\) is a nondegenerate critical point of V(x), we know

$$\begin{aligned} V(a_j)-V(x)=-\sum ^3_{i=1}\sum ^3_{l=1}(x^i-a^{i}_{j})(x^l-a^{l}_{j})\frac{\partial ^2 V(a_{j})}{\partial x^i\partial x^l}+o(|x-a_j|^2). \end{aligned}$$
(A.13)

Then using (A.13) and Hölder’s inequality, for any small constant d, we have

$$\begin{aligned} \begin{aligned}&\left| \int _{B_{d}(x_{j,\varepsilon })}\big (V(a_j)-V(x)\big )U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) u(x)dx\right| \\&\quad \le C\int _{B_{d}(x_{j,\varepsilon })}|x-a_{j}| ^2U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) |u(x)|dx \\&\quad \le C\left( \int _{B_{d}(x_{j,\varepsilon })}|x-a_j|^{4}U_{a_j}^2\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) dx\right) ^{\frac{1}{2}}\left( \int _{B_{d}(x_{j,\varepsilon })}u^2(x) dx\right) ^{\frac{1}{2}}\\&\quad \le C\varepsilon ^{\frac{3}{2}}\left( \int _{B_{{d}/{\varepsilon }}(0)}|\varepsilon y+(x_{j,\varepsilon }-a_j)|^{4}U_{a_j}^2(y)\mathrm {d}y\right) ^{\frac{1}{2}}\Vert u\Vert _{\varepsilon }\\&\quad \le C\varepsilon ^{\frac{3}{2}}\big (\varepsilon ^2+|x_{j,\varepsilon }-a_j|^2\big )\Vert u \Vert _{\varepsilon }. \end{aligned} \end{aligned}$$
(A.14)

Also, by (A.10), we can deduce that

$$\begin{aligned} \left| \int _{\mathbb {R}^3\backslash B_{d}(x_{j,\varepsilon })}\big (V(a_j)-V(x)\big )U_{a_j} \left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) u(x) dx\right| \le Ce^{-\eta /\varepsilon }\Vert u\Vert _{\varepsilon }. \end{aligned}$$
(A.15)

Then from (A.14) and (A.15), we get (A.11).

Similarly, since \(a_j\) is the nondegenerate critical point of V(x), we know

$$\begin{aligned} \frac{\partial V(x)}{\partial x^i}=\frac{\partial V(x)}{\partial x^i}- \frac{\partial V(a_{j})}{\partial x^i}=\sum ^3_{l=1}(x^l- a^l_{j})\frac{\partial ^2 V(a_{j})}{\partial x^i\partial x^l}+o(|x- a_{j}|),~\text{ for }~i=1,2,3. \end{aligned}$$
(A.16)

So similar to (A.14), from (A.16) and Hölder’s inequality, for any small fixed d, we have

$$\begin{aligned} \begin{aligned} \left| \int _{B_{{d}}(x_{j,\varepsilon })}\frac{\partial V(x)}{\partial x^i}U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) u(x)dx\right|&\le C\int _{B_{{d}}(x_{j,\varepsilon })}|x-a_{j}| U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) |u(x)|dx \\&\le C\varepsilon ^{\frac{3}{2}}\big (\varepsilon +|x_{j,\varepsilon }-a_j|\big )\Vert u \Vert _{\varepsilon }. \end{aligned} \end{aligned}$$
(A.17)

Also, by (A.10), we know

$$\begin{aligned} \left| \int _{\mathbb {R}^3\backslash B_{{d}}(x_{j,\varepsilon })}\frac{\partial V(x)}{\partial x^i}U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) u(x)dx\right| \le Ce^{-\eta /\varepsilon }\Vert u\Vert _{\varepsilon }. \end{aligned}$$
(A.18)

Then (A.17) and (A.18) imply (A.12). \(\square \)

Regularization and some calculations

Let \(u^{(1)}_{\varepsilon }(x)\), \(u^{(2)}_{\varepsilon }(x)\) be two different positive solutions concentrating at \(\{a_1,\ldots , a_k\}\). Set

$$\begin{aligned} \eta _{\varepsilon }(x)=\frac{u_{\varepsilon }^{(1)}(x)-u_{\varepsilon }^{(2)}(x)}{\Vert u_{\varepsilon }^{(1)}-u_{\varepsilon }^{(2)}\Vert _{L^{\infty }(\mathbb {R}^3)}}. \end{aligned}$$
(B.1)

Then we know \(\Vert \eta _{\varepsilon }\Vert _{L^{\infty }(\mathbb {R}^3)}=1\) and

$$\begin{aligned} \begin{aligned} -\varepsilon ^2\Delta \eta _{\varepsilon }(x)+V(x)\eta _{\varepsilon }(x)=\,&E_1(x)\eta _{\varepsilon }(x)+E_2(x),~~x\in \mathbb {R}^{3}, \end{aligned} \end{aligned}$$
(B.2)

where

$$\begin{aligned} E_1(x)= \frac{1}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3} \frac{\big (u^{(1)}_{\varepsilon }(\xi )\big )^2}{|x-\xi |}d\xi , ~E_2(x)=\frac{u^{(2)}_{\varepsilon }(x)}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3} \frac{u^{(1)}_{\varepsilon }(\xi )+u^{(2)}_{\varepsilon }(\xi )}{|x-\xi |}\eta _\varepsilon (\xi )d\xi . \end{aligned}$$
(B.3)

Proposition B.1

For \(\eta _{\varepsilon }(x)\) defined by (B.1), we have

$$\begin{aligned} \Vert \eta _{\varepsilon }\Vert _{\varepsilon }=O(\varepsilon ^{3/2}). \end{aligned}$$
(B.4)

Proof

From (B.2) we have

$$\begin{aligned} \Vert \eta _{\varepsilon }\Vert ^2_{\varepsilon }=\int _{\mathbb {R}^3}E_1(x) \eta ^2_{\varepsilon }(x)dx+\int _{\mathbb {R}^3}E_2(x) \eta _{\varepsilon }(x)dx. \end{aligned}$$
(B.5)

Next, by Hardy–Littlewood–Sobolev inequality, Hölder’s inequality and the fact \(|\eta _{\varepsilon }(x)|\le 1\), we know

$$\begin{aligned} \begin{aligned} \left| \int _{\mathbb {R}^3}E_1(x) \eta ^2_{\varepsilon }(x)dx\right|&\le C \varepsilon ^{-2}\left( \int _{\mathbb {R}^3} \big |u^{(1)}_{\varepsilon }(\xi )\big |^{12/5}d\xi \right) ^{5/6} \cdot \left( \int _{\mathbb {R}^3} \big |\eta _\varepsilon (x)\big |^{12/5} dx\right) ^{5/6}\\&\le C \varepsilon ^{-2}\left( \int _{\mathbb {R}^3} \big |u^{(1)}_{\varepsilon }(\xi )\big |^{12/5}d\xi \right) ^{5/6} \cdot \left( \int _{\mathbb {R}^3} \big |\eta _\varepsilon (x)\big |^{2} dx\right) ^{5/6} \\&\le C\varepsilon ^{1/2}\Vert \eta _{\varepsilon }\Vert ^{5/3}_{\varepsilon }\le C \varepsilon ^{3}+\frac{1}{2}\Vert \eta _{\varepsilon }\Vert ^{2}_{\varepsilon }, \end{aligned} \end{aligned}$$
(B.6)

and

$$\begin{aligned} \begin{aligned}&\left| \int _{\mathbb {R}^3}E_2(x) \eta _{\varepsilon }(x)dx \right| \le C \varepsilon ^{-2}\left( \int _{\mathbb {R}^3} \big |u^{(2)}_{\varepsilon }(x)\big |^{\frac{6}{5}}dx\right) ^{\frac{5}{6}}\\&\quad \cdot \left( \int _{\mathbb {R}^3} \big |(u^{(1)}_{\varepsilon }(\xi )+u^{(2)}_{\varepsilon }(\xi ))\big |^{\frac{6}{5}} d\xi \right) ^{\frac{5}{6}}\le C\varepsilon ^{3}. \end{aligned} \end{aligned}$$
(B.7)

Then (B.5), (B.6) and (B.7) imply (B.4). \(\square \)

Lemma B.2

For any fixed \(R>0\), it holds

$$\begin{aligned} E_1(x)=o(1)\cdot R+O\left( \frac{1}{R}\right) ,~ \text{ for } ~x\in \mathbb {R}^3\backslash \bigcup _{j=1}^k B_{R\varepsilon }(x_{j,\varepsilon }), \end{aligned}$$
(B.8)

and

$$\begin{aligned} E_2(x)=O\big (e^{-\theta ' R}\big ),~ \text{ for } ~x\in \mathbb {R}^3\backslash \bigcup _{j=1}^k B_{R\varepsilon }(x_{j,\varepsilon })~ \text{ and } \text{ some }~\theta '>0. \end{aligned}$$
(B.9)

Proof

First, we know

$$\begin{aligned} \big \{\xi ,|x-\xi |\le R \varepsilon /2\big \}\subset \mathbb {R}^3\backslash \bigcup _{j=1}^k B_{R\varepsilon /2}(x_{j,\varepsilon }), ~\text{ for }~x\in \mathbb {R}^3\backslash \bigcup _{j=1}^k B_{R\varepsilon }(x_{j,\varepsilon }), \end{aligned}$$

and \(\Vert u_{\varepsilon }\Vert _{\varepsilon }=O(\varepsilon ^{3/2})\). Then by (2.9), for \(x\in \mathbb {R}^3\backslash \bigcup _{j=1}^k B_{R\varepsilon }(x_{j,\varepsilon })\), it holds

$$\begin{aligned} \begin{aligned} E_1(x)=\,&\frac{1}{8\pi \varepsilon ^2}\int _{|x-\xi |\le R\varepsilon /2} \big (u^{(1)}_{\varepsilon }(\xi )\big )^2|x-\xi |^{-1}d\xi \\&+ \frac{1}{8\pi \varepsilon ^2}\int _{|x-\xi |> R\varepsilon /2} \big (u^{(1)}_{\varepsilon }(\xi )\big )^2|x-\xi |^{-1}d\xi \\ =\,&O\left( \varepsilon ^{-2}\int _{|x-\xi |\le R\varepsilon /2} \big (w^{(1)}_{\varepsilon }(\xi )\big )^2|x-\xi |^{-1}d\xi \right) +O\big (e^{-2\theta R}R^{2}\big )+O\left( \frac{1}{R}\right) . \end{aligned} \end{aligned}$$
(B.10)

Also, by Hölder’s inequality, we have

$$\begin{aligned} \begin{aligned}&\int _{|x-\xi |\le R\varepsilon /2} \big (w^{(1)}_{\varepsilon }(\xi )\big )^2|x-\xi |^{-1}d\xi \\&\quad =O\left( \left( \int _{\mathbb {R}^3} \big (w^{(1)}_{\varepsilon }(\xi ))^6d\xi \right) ^{1/3}\cdot \left( \int _{|x-\xi |\le R\varepsilon /2} {|x-\xi |^{-3/2}}d\xi \right) ^{2/3}\right) \\&\quad = R\cdot O\big (\varepsilon ^{-1}\Vert w^{(1)}_{\varepsilon }\Vert _{\varepsilon }^2\big )=o(\varepsilon ^2)\cdot R. \end{aligned} \end{aligned}$$
(B.11)

Then (B.10) and (B.11) imply (B.8).

Next for \(x\in \mathbb {R}^3\backslash \bigcup _{j=1}^k B_{R\varepsilon }(x_{j,\varepsilon })\), we have

$$\begin{aligned} E_2(x)=O\big (e^{-\theta R}\big )\cdot \varepsilon ^{-2} \int _{\mathbb {R}^3} \big (u^{(1)}_{\varepsilon }(\xi )+u^{(2)}_{\varepsilon }(\xi )\big ) |x-\xi |^{-1}\cdot |\eta _\varepsilon (\xi )|d\xi , \end{aligned}$$
(B.12)

and

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^3} \big (u^{(1)}_{\varepsilon }(\xi )+u^{(2)}_{\varepsilon }(\xi )\big ) |x-\xi |^{-1}\cdot |\eta _\varepsilon (\xi )|d\xi \\&\quad =\int _{|x-\xi |\le R\varepsilon /2} \big (u^{(1)}_{\varepsilon }(\xi )+u^{(2)}_{\varepsilon }(\xi )\big ) |x-\xi |^{-1}\cdot |\eta _\varepsilon (\xi )|d\xi \\&\qquad + O\big ((R\varepsilon )^{-1}\Vert u^{(1)}_{\varepsilon }+u^{(2)}_{\varepsilon }\Vert _{\varepsilon }\Vert \eta _\varepsilon \Vert _{\varepsilon }\big )\\&\quad =O\big (\Vert (u^{(1)}_{\varepsilon }(\cdot )+u^{(2)}_{\varepsilon }(\cdot )\Vert _\varepsilon \big ) \cdot \left( \int _{|x-\xi |\le R\varepsilon /2} |x-\xi |^{-2}d\xi \right) ^{\frac{1}{2}}+O\big (R^{-1}\varepsilon ^2\big )\\&\quad =O\big ( (R^{\frac{1}{2}}+R^{-1}) \varepsilon ^{2}\big ). \end{aligned} \end{aligned}$$
(B.13)

Then (B.12) and (B.13) imply (B.9). \(\square \)

Lemma B.3

For any fixed small \(d>0\), it holds

$$\begin{aligned} E_1(x)=\frac{1}{8\pi \varepsilon ^2} \left( \int _{\mathbb {R}^3}U_{a_j}^2\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) {|x-\xi |}^{-1}d\xi \right) +o(1),~ \text{ in }~B_{d}(x^{(1)}_{j,\varepsilon }), \end{aligned}$$
(B.14)

and

$$\begin{aligned} E_2(x)=\frac{1}{4\pi }\cdot U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \left( \int _{\mathbb {R}^3} U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(\xi )|x-\xi |^{-1}d\xi \right) +o(1), ~\text{ in }~B_{d}(x^{(1)}_{j,\varepsilon }). \end{aligned}$$
(B.15)

Proof

For \(x\in B_{d}(x^{(1)}_{j,\varepsilon })\), we have

$$\begin{aligned} \begin{aligned}&\left| E_1(x)-\frac{1}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3}U_{a_j}^2\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) {|x-\xi |^{-1}}d\xi \right| \\&\quad =O\left( \varepsilon ^{-2} \int _{\mathbb {R}^3} \big |w^{(1)}_{\varepsilon }(\xi )\big |\cdot \left( u^{(1)}_{\varepsilon }(\xi )+ U_{a_j} \left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right) |x-\xi |^{-1}d\xi \right) + O(e^{-\eta /\varepsilon }) \\&\quad = O\left( \varepsilon ^{-2} \int _{|x-\xi |\le C} \big |w^{(1)}_{\varepsilon }(\xi )\big |\cdot \left( u^{(1)}_{\varepsilon }(\xi )+ U_{a_j} \left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right) |x-\xi |^{-1}d\xi \right) \\&\qquad +O\left( \varepsilon ^{-2}\Vert w^{(1)}_{\varepsilon }(\cdot )\Vert _{\varepsilon }\cdot \left\| u^{(1)}_{\varepsilon }(\cdot )+ U_{a_j} \left( \frac{\cdot -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right\| _{\varepsilon }\right) + O(e^{-\eta /\varepsilon }), \end{aligned} \end{aligned}$$
(B.16)

where C is a fixed constant.

On the other hand, by Hölder’s inequality, we know

$$\begin{aligned} \begin{aligned}&\int _{|x-\xi |\le C} \big |w^{(1)}_{\varepsilon }(\xi )\big |\cdot \left( u^{(1)}_{\varepsilon }(\xi )+ U_{a_j} \left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right) |x-\xi |^{-1}d\xi \\&\quad =O\left( \Vert w^{(1)}_{\varepsilon }(\cdot )\Vert _{L^6(\mathbb {R}^3)}\cdot \left\| u^{(1)}_{\varepsilon }(\cdot )+ U_{a_j} \left( \frac{\cdot -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right\| _{L^2(\mathbb {R}^3)} \left( \int _{|x-\xi |\le C} |x-\xi |^{-3}d\xi \right) ^{1/3}\right) \\&\quad = O\left( \varepsilon ^{-1}\Vert w^{(1)}_{\varepsilon }(\cdot )\Vert _{\varepsilon }\cdot \left\| u^{(1)}_{\varepsilon }(\cdot )+ U_{a_j} \left( \frac{\cdot -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right\| _{\varepsilon }\right) =o\big (\varepsilon ^2\big ). \end{aligned} \end{aligned}$$
(B.17)

Then (B.16) and (B.17) imply (B.14). Similar to the estimates of (B.14), combining Proposition 3.1 and Proposition 4.3, we deduce (B.15). \(\square \)

Estimates of the term \(w_\varepsilon \)

For convenience, we define the following notations:

$$\begin{aligned} R_\varepsilon (x)=\sum ^k_{l=1}U_{a_l} \left( \frac{x-x_{l,\varepsilon }}{\varepsilon }\right) ,~R^{(m)}_\varepsilon (x)=\sum ^k_{l=1}U_{a_l} \left( \frac{x-x^{(m)}_{l,\varepsilon }}{\varepsilon }\right) , ~\text{ for }~m=1,2, \end{aligned}$$
(C.1)

and

$$\begin{aligned} W_{j,\varepsilon }(x)=\sum ^k_{l=1,l\ne j}U_{a_l} \left( \frac{x-x_{l,\varepsilon }}{\varepsilon }\right) ,~W^{(m)}_{j,\varepsilon }(x)=\sum ^k_{l=1,l\ne j}U_{a_l} \left( \frac{x-x^{(m)}_{l,\varepsilon }}{\varepsilon }\right) , ~\text{ for }~m=1,2. \end{aligned}$$
(C.2)

Let \(M_{\varepsilon }\big (x,w_{\varepsilon }(x)\big )\) as follows:

$$\begin{aligned} \begin{aligned} M_{\varepsilon }\big (x,w_{\varepsilon }(x)\big ):=\,&-\varepsilon ^2\Delta w_{\varepsilon }(x)+G\big (x,w_{\varepsilon }(x)\big ), \end{aligned} \end{aligned}$$
(C.3)

where

$$\begin{aligned} \begin{aligned} G\big (x,w_{\varepsilon }(x)\big )=\,&V(x)w_{\varepsilon }(x)-\frac{1}{8\pi \varepsilon ^2} \left( \int _{\mathbb {R}^3}\frac{\big (R_\varepsilon (\xi )\big )^2}{|x-\xi |}d\xi \right) w_{\varepsilon }(x)\\&+ \frac{1}{4\pi \varepsilon ^2} \left( \int _{\mathbb {R}^3}\frac{R_\varepsilon (\xi ) w_{\varepsilon }(\xi )}{|x-\xi |}d\xi \right) R_\varepsilon (x). \end{aligned} \end{aligned}$$
(C.4)

Let \(u_\varepsilon (x)=R_{\varepsilon }(x)+w_\varepsilon (x)\) be the solution of (1.3), then

$$\begin{aligned} \begin{aligned} M_{\varepsilon }\big (x,w_{\varepsilon }(x)\big )=N\big (x,w_{\varepsilon }(x)\big )+ l_{\varepsilon }(x), \end{aligned} \end{aligned}$$
(C.5)

where

$$\begin{aligned} \begin{aligned} N\big (x,w_{\varepsilon }(x)\big )=\,&\frac{1}{8\pi \varepsilon ^2} \left( \int _{\mathbb {R}^3}\frac{w_{\varepsilon }^2(\xi )}{|x-\xi |}d\xi \right) \big (R_\varepsilon (x)+ w_{\varepsilon }(x)\big ) +\frac{w_{\varepsilon }(x)}{4\pi \varepsilon ^{2}}\int _{\mathbb {R}^{3}}\frac{R_\varepsilon (\xi )w_{\xi }(\xi )}{|x-\xi |}d\xi , \end{aligned} \end{aligned}$$
(C.6)

and

$$\begin{aligned} \begin{aligned} l_{\varepsilon }(x)=\,&\frac{W_{j,\varepsilon }(x)}{8\pi \varepsilon ^{2}}\int _{\mathbb {R}^{3}} \frac{W_{j,\varepsilon }(\xi )U_{a_{j}}(\frac{\xi -x_{j,\varepsilon }}{\varepsilon }) }{|x-\xi |}d\xi +\sum _{j=1}^k\big (V(a_j) - V(x)\big )U_{a_j} \big (\frac{x-x_{j,\varepsilon }}{\varepsilon }\big ). \end{aligned} \end{aligned}$$
(C.7)

Proposition C.1

Let \(u_\varepsilon (x)=R_{\varepsilon }(x)+w_\varepsilon (x)\) be the solution of (1.3), then there exists a constant \(\bar{\rho }>0\) independent of \(\varepsilon \) such that

$$\begin{aligned} \int _{\mathbb {R}^3} M_{\varepsilon }\big (x,w_\varepsilon (x)\big )w_\varepsilon (x)dx \ge \bar{\rho } \Vert w_\varepsilon \Vert ^2_{\varepsilon }. \end{aligned}$$
(C.8)

Proof

Similar to the proof of Proposition 3.1 in [25], we can prove (C.8) by the contradiction argument and blow-up analysis. For the more details, one can refer to [15, 25]. \(\square \)

Proposition C.2

Suppose that \(u_\varepsilon (x)=R_{\varepsilon }(x)+w_\varepsilon (x)\) is a positive solution of (1.3) and \(\{a_1,\ldots ,a_k\}\subset \mathbb {R}^3\) are the different nondegenerate critical points of V(x) with \(k\ge 1\), then it holds

$$\begin{aligned} \Vert w_{\varepsilon }\Vert _{\varepsilon }=O(\varepsilon ^{7/2})+O\left( \varepsilon ^ {3/2}\max _{j=1,\ldots ,k}|x_{j,\varepsilon }-a_j|^{2}\right) . \end{aligned}$$
(C.9)

Proof

First, from Proposition C.1, we know

$$\begin{aligned} \begin{aligned} \Vert w_{\varepsilon }\Vert ^2_{\varepsilon }&\le C\int _{\mathbb {R}^3}N\big (x,w_{\varepsilon }(x)\big )w_{\varepsilon }(x)dx+C \int _{\mathbb {R}^3}l_{\varepsilon }(x)w_{\varepsilon }(x)dx. \end{aligned} \end{aligned}$$
(C.10)

Next, using (2.2) and (A.5), we deduce

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^3}N\big (x,w_{\varepsilon }(x)\big )w_{\varepsilon }(x)dx&=\frac{1}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3}\frac{w_{\varepsilon }^2(\xi )}{|x-\xi |} \big (R_\varepsilon (x)+ w_{\varepsilon }(x)\big )w_{\varepsilon }(x)dxd\xi \\&\quad +\frac{1}{4\pi \varepsilon ^{2}}\int _{\mathbb {R}^3}\int _{\mathbb {R}^{3}}\frac{R_\varepsilon (\xi )w_{\xi }(\xi )}{|x-\xi |} w^2_{\varepsilon }(x)dxd\xi \\&=O\big (\varepsilon ^{-3}\Vert w_{\varepsilon }\Vert ^3_\varepsilon \cdot \Vert w_{\varepsilon }+R_\varepsilon \Vert _\varepsilon \big )=o(1)\Vert w_{\varepsilon }\Vert ^2_\varepsilon . \end{aligned} \end{aligned}$$
(C.11)

Also from (A.10) and (A.13), we have

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^3}l_{\varepsilon }(x)w_{\varepsilon }(x)dx=\,&\sum ^k_{j=1}\int _{\mathbb {R}^3}\big (V(a_j)-V(x)\big ) U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (x)d\xi dx\\&-\frac{1}{8\pi \varepsilon ^{2}}\int _{\mathbb {R}^{3}}\int _{\mathbb {R}^{3}} W_{j,\varepsilon }(\xi )U_{a_{j}}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) W_{j,\varepsilon }(x) w_\varepsilon (x){|x-\xi |}^{-1}d\xi \\ =\,&O\left( \varepsilon ^{3/2}\Vert w_\varepsilon \Vert _{\varepsilon }\left( \varepsilon ^2 +\max _{j=1,\ldots ,k}|x_{j,\varepsilon }-a_j|^{2}\right) +e^{-\eta /\varepsilon }\right) . \end{aligned} \end{aligned}$$
(C.12)

Then (C.10), (C.11) and (C.12) imply (C.9). \(\square \)

Proposition C.3

Let \(u_\varepsilon (x)\) be a positive solution of (1.3) as in Proposition C.2, then it holds

$$\begin{aligned} \Vert w_{\varepsilon }\Vert _{\varepsilon }=O(\varepsilon ^{7/2}). \end{aligned}$$
(C.13)

Proof

It follows from the results of Propositions 3.1 and C.2 directly. \(\square \)

The estimates of \(A_{1,1}\) and \(A_{1,2}\) in (4.12)

Lemma D.1

It holds

$$\begin{aligned} \begin{aligned} A_{1,1}=\,&\frac{1}{4\pi \varepsilon ^2}\int _{\mathbb {R}^3}\int _{\mathbb {R}^3}U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&+\frac{1}{8\pi \varepsilon ^2}\sum ^k_{l=1,l\ne j}\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U^2_{a_l}\left( \frac{\xi -x_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+O(\varepsilon ^6). \end{aligned} \end{aligned}$$
(D.1)

Proof

First, \(A_{1,1}\) can be written as follows:

$$\begin{aligned} A_{1,1}=A_{1,1,1}+A_{1,1,2}+A_{1,1,3}+A_{1,1,4}+A_{1,1,5}, \end{aligned}$$
(D.2)

where

$$\begin{aligned}&A_{1,1,1}=\frac{1}{8\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3}U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U^2_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&A_{1,1,2}=\frac{1}{4\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3}U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&A_{1,1,3}=\frac{1}{8\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3} U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w^2_{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&A_{1,1,4}= \frac{1}{4\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3} U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) W_{j,\varepsilon }(\xi )\left( U_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) +w_\varepsilon (\xi )\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&A_{1,1,5}= \frac{1}{8\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3} U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) \big (W_{j,\varepsilon }(\xi )\big )^2 \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx. \end{aligned}$$

Now by symmetry and (A.10), we have

$$\begin{aligned} \begin{aligned} A_{1,1,1}&=-\frac{1}{8\pi \varepsilon ^2}\int _{ \mathbb {R}^3 \backslash B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3}U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U^2_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx \\&=O(e^{-\eta /\varepsilon }), \end{aligned} \end{aligned}$$
(D.3)

and

$$\begin{aligned} \begin{aligned} A_{1,1,2}&=\frac{1}{4\pi \varepsilon ^2}\int _{\mathbb {R}^3}\int _{\mathbb {R}^3}U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+O(e^{-\eta /\varepsilon }). \end{aligned} \end{aligned}$$
(D.4)

Next, by (A.5) and (C.13), we get

$$\begin{aligned} \begin{aligned} A_{1,1,3}&=O\left( \varepsilon ^{-4}\left\| U_{a_j}\left( \frac{\cdot -x_{j,\varepsilon }}{\varepsilon }\right) \right\| ^2_{\varepsilon }\cdot \Vert w_\varepsilon \Vert ^2_{\varepsilon }\right) =O\big (\varepsilon ^{6} \big ). \end{aligned} \end{aligned}$$
(D.5)

Also, (2.10) and (A.10) imply

$$\begin{aligned}&W_{j,\varepsilon }(x)\left( U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) +w_\varepsilon (x)\right) =O(e^{-\eta /\varepsilon }),~\text{ for }~x\in \mathbb {R}^3. \end{aligned}$$
(D.6)

This means

$$\begin{aligned} \begin{aligned} A_{1,1,4}&=O(e^{-\eta /\varepsilon }). \end{aligned} \end{aligned}$$
(D.7)

Also, from (A.10), we can deduce

$$\begin{aligned} \begin{aligned} A_{1,1,5}=\,&\frac{1}{8\pi \varepsilon ^2}\sum ^k_{l=1,l\ne j}\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U^2_{a_l}\left( \frac{\xi -x_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+O\big (e^{-\eta /\varepsilon }\big ). \end{aligned} \end{aligned}$$
(D.8)

Then (D.2), (D.3), (D.4), (D.5), (D.7) and (D.8) imply (D.1). \(\square \)

Lemma D.2

It holds

$$\begin{aligned} \begin{aligned} A_{1,2}=\,&-\frac{1}{4\pi \varepsilon ^2}\int _{\mathbb {R}^3}\int _{\mathbb {R}^3}U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+O\big (\varepsilon ^{6}\big ). \end{aligned} \end{aligned}$$
(D.9)

Proof

First, \(A_{1,2}\) can be written as follows:

$$\begin{aligned} A_{1,2}=A_{1,2,1}+A_{1,2,2}+A_{1,2,3}+A_{1,2,4}+A_{1,2,5}, \end{aligned}$$
(D.10)

where

$$\begin{aligned}&A_{1,2,1}=\frac{1}{4\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3}U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (x) U^2_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&A_{1,2,2}=\frac{1}{2\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3}U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (x) U_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&A_{1,2,3}=\frac{1}{4\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (x) w^2_{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&A_{1,2,4}=\frac{1}{2\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (x) W_{j,\varepsilon }(\xi )\left( U_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) +w_\varepsilon (\xi )\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&A_{1,2,5}= \frac{1}{4\pi \varepsilon ^2}\int _{ B_{d}(x_{j,\varepsilon })} \int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (x) \big (W_{j,\varepsilon }(\xi )\big )^2 \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx. \end{aligned}$$

Now similar to the calculations of (D.3) and (D.4), by symmetry and (A.10), we know

$$\begin{aligned} \begin{aligned} A_{1,2,1}&=-\frac{1}{4\pi \varepsilon ^2}\int _{\mathbb {R}^3}\int _{\mathbb {R}^3}U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U_{a_j}\left( \frac{\xi -x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&\quad +O(e^{-\eta /\varepsilon }). \end{aligned} \end{aligned}$$
(D.11)

Next, by (A.5) and (C.13), we get

$$\begin{aligned} \begin{aligned} A_{1,2,2}=O\left( \varepsilon ^{-4}\left\| U_{a_j}\left( \frac{\cdot -x_{j,\varepsilon }}{\varepsilon }\right) \right\| ^2_{\varepsilon }\cdot \Vert w_\varepsilon \Vert ^2_{\varepsilon }\right) =O\big (\varepsilon ^{6} \big ), \end{aligned} \end{aligned}$$
(D.12)

and

$$\begin{aligned} A_{1,2,3}=O\left( \varepsilon ^{-4}\left\| U_{a_j}\left( \frac{\cdot -x_{j,\varepsilon }}{\varepsilon }\right) \right\| _{\varepsilon }\cdot \Vert w_\varepsilon \Vert ^3_{\varepsilon }\right) =O\big (\varepsilon ^{8} \big ). \end{aligned}$$
(D.13)

Also, similar to (D.7), we have

$$\begin{aligned} A_{1,2,4}=O(e^{-\eta /\varepsilon }). \end{aligned}$$
(D.14)

On the other hand, for \(l\ne j\) and fixed small d, from (A.10) and (C.13), we have

$$\begin{aligned} \begin{aligned} \int _{ B_{d}(x_{j,\varepsilon })}&\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (x)U^2_{a_l}\left( \frac{\xi -x_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\ =\,&\int _{ B_{d}(x_{j,\varepsilon })} \int _{\mathbb {R}^3\backslash B_{2d}(x_{j,\varepsilon })} U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (x)U^2_{a_l}\left( \frac{\xi -x_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&+O\big (e^{-\eta /\varepsilon }\big )\\ =\,&O\left( \int _{ B_{d}(x_{j,\varepsilon })} \int _{\mathbb {R}^3\backslash B_{2d}(x_{j,\varepsilon })} U_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon (x)U^2_{a_l}\left( \frac{\xi -x_{l,\varepsilon }}{\varepsilon }\right) d\xi dx\right) +O\big (e^{-\eta /\varepsilon }\big )\\ =\,&O\left( \left\| U_{a_j}\left( \frac{\cdot -x_{j,\varepsilon }}{\varepsilon }\right) \right\| _{\varepsilon }\cdot \Vert w_\varepsilon \Vert _{\varepsilon }\cdot \left\| U_{a_l}\left( \frac{\cdot -x_{l,\varepsilon }}{\varepsilon }\right) \right\| ^2_{\varepsilon }\right) +O\big (e^{-\eta /\varepsilon }\big ) =O\big (\varepsilon ^{8}\big ). \end{aligned} \end{aligned}$$
(D.15)

Then (A.10) and (D.15) imply

$$\begin{aligned} \begin{aligned} A_{1,2,5}=\,&O\big (\varepsilon ^{6}\big )+O\big (e^{-\eta /\varepsilon }\big )=O\big (\varepsilon ^{6}\big ). \end{aligned} \end{aligned}$$
(D.16)

Then (D.10), (D.11), (D.12), (D.13), (D.14) and (D.16) imply (D.9). \(\square \)

Lemma D.3

For \(l\ne j\), it holds

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^3}&\int _{\mathbb {R}^3} U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U^2_{a_l}\left( \frac{\xi -x_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&=\varepsilon ^3(a^{i}_{j}-a^{i}_{l})\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) |x-\xi |^{-3}d\xi dx+o(\varepsilon ^6). \end{aligned} \end{aligned}$$
(D.17)

Proof

First, we have

$$\begin{aligned} \int _{\mathbb {R}^3}&\int _{\mathbb {R}^3} U^2_{a_j}\left( \frac{x-x_{j,\varepsilon }}{\varepsilon }\right) U^2_{a_l}\left( \frac{\xi -x_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx =B_{1}+B_{2}, \end{aligned}$$
(D.18)

where

$$\begin{aligned} B_{1}={\varepsilon ^4}\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i}{|x-\xi |^3}d\xi dx, \end{aligned}$$

and

$$\begin{aligned} B_{2}=-{\varepsilon ^4}\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) \frac{\xi ^i}{|x-\xi |^3}d\xi dx. \end{aligned}$$

Then for small fixed \(d>0\), we know

$$\begin{aligned} \begin{aligned} B_{1}=\,&{\varepsilon ^4}\int _{B_{d/\varepsilon }(0)}\int _{\mathbb {R}^3\backslash B_{(2d)/\varepsilon }(0)} U^2_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i}{|x-\xi |^3}d\xi dx+O\big (e^{-\eta /\varepsilon }\big )\\ =&O\left( \varepsilon ^7 \left( \int _{\mathbb {R}^3} U^2_{a_j}(x)|x|dx\right) \cdot \left( \int _{\mathbb {R}^3} U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) d\xi \right) \right) +O\big (e^{-\eta /\varepsilon }\big )=O\big (\varepsilon ^7\big ). \end{aligned} \end{aligned}$$
(D.19)

Also we have

$$\begin{aligned} \begin{aligned} B_{2}=\,&-{\varepsilon ^4}\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) \frac{\xi ^i+\frac{x^i_{j,\varepsilon }-x^i_{l,\varepsilon }}{\varepsilon }}{|x-\xi |^3}d\xi dx\\&+ (x^i_{j,\varepsilon }-x^i_{l,\varepsilon })\varepsilon ^3\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) |x-\xi |^{-3}d\xi dx. \end{aligned} \end{aligned}$$
(D.20)

Next, similar to (D.19), we deduce

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^3}&\int _{\mathbb {R}^3} U^2_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) |x-\xi |^{-3}d\xi dx=O\big (\varepsilon ^3\big ), \end{aligned} \end{aligned}$$
(D.21)

and

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) \frac{\xi ^i+\frac{x^i_{j,\varepsilon }-x^i_{l,\varepsilon }}{\varepsilon }}{|x-\xi |^3}d\xi dx=O\big (\varepsilon ^3\big ). \end{aligned} \end{aligned}$$
(D.22)

Then using (2.2), (D.20), (D.21) and (D.22), we obtain

$$\begin{aligned} \begin{aligned} B_{2}=\,&\varepsilon ^3(a^i_{j}-a^i_{l}) \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x_{j,\varepsilon }-x_{l,\varepsilon }}{\varepsilon }\right) |x-\xi |^{-3}d\xi dx+o\big (\varepsilon ^6\big ). \end{aligned} \end{aligned}$$
(D.23)

Then (D.18), (D.19) and (D.23) imply (D.17). \(\square \)

The estimates of \(F_{1,1}\), \(F_{1,2}\), \(F_{2,1}\) and \(F_{2,3}\) in (5.6) and (5.7)

Lemma E.1

It holds

$$\begin{aligned} \begin{aligned} F_{1,1}&=G_1+\frac{1}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \big (w^{(1)}_{\varepsilon }(\xi )+w^{(2)}_{\varepsilon }(\xi )\big )\eta _{\varepsilon }(\xi )\\&\quad \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+o\big (\varepsilon ^4\big ), \end{aligned} \end{aligned}$$
(E.1)

where

$$\begin{aligned} G_1&=\frac{1}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \left( U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right. \\&\quad \left. + U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx. \end{aligned}$$

Proof

\(F_{1,1}\) can be written as

$$\begin{aligned} \begin{aligned} F_{1,1}&=F_{1,1,1}+F_{1,1,2}+F_{1,1,3}, \end{aligned} \end{aligned}$$
(E.2)

where

$$\begin{aligned}&F_{1,1,1}=\frac{1}{8\pi \varepsilon ^2} \int _{ B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} U_{a_j}^2\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \left( U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) + U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \\&\quad \eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&F_{1,1,2}=\frac{1}{8\pi \varepsilon ^2} \int _{ B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} U_{a_j}^2\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \big (w^{(1)}_{\varepsilon }(\xi )+w^{(2)}_{\varepsilon }(\xi )\big )\eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&F_{1,1,3}=\frac{1}{8\pi \varepsilon ^2} \int _{ B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} U_{a_j}^2\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \big ( W^{(1)}_{j,\varepsilon }(\xi )+W^{(2)}_{j,\varepsilon }(\xi )\big )\eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx. \end{aligned}$$

Now, by (A.10), we get

$$\begin{aligned} \begin{aligned} F_{1,1,1}&=G_1+O\big (e^{-\eta /\varepsilon }\big ), \end{aligned} \end{aligned}$$
(E.3)

and

$$\begin{aligned} \begin{aligned} F_{1,1,2}&=\frac{1}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \big (w^{(1)}_{\varepsilon }(\xi )+w^{(2)}_{\varepsilon }(\xi )\big )\eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&\quad +O\big (e^{-\eta /\varepsilon }\big ). \end{aligned} \end{aligned}$$
(E.4)

Next, using Proposition 5.1, we can calculate that, for \(l\ne j\),

$$\begin{aligned} \begin{aligned}&\frac{1}{8\pi \varepsilon ^2} \int _{ B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} U_{a_j}^2\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) U_{a_l}\left( \frac{\xi -x^{(1)}_{l,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&\quad = \frac{\varepsilon ^2}{8\pi } \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( x-\frac{x^{(1)}_{j,\varepsilon }-x^{(1)}_{l,\varepsilon }}{\varepsilon }\right) U_{a_l}(\xi )\eta _{l,\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+O\big (e^{-\eta /\varepsilon }\big )\\&\quad = \frac{\varepsilon ^2}{8\pi } \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( x-\frac{x^{(1)}_{j,\varepsilon }-x^{(1)}_{l,\varepsilon }}{\varepsilon }\right) U_{a_l}(\xi )\left( \sum ^3_{m=1}d_{m,l} \frac{\partial U_{a_l}(\xi )}{\partial \xi _m}\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&\qquad +o\left( \varepsilon ^2\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( x-\frac{x^{(1)}_{j,\varepsilon }-x^{(1)}_{l,\varepsilon }}{\varepsilon }\right) U_{a_l}(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\right) +O\big (e^{-\eta /\varepsilon }\big )\\&\quad = \frac{\varepsilon ^2}{16\pi } \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( x-\frac{x^{(1)}_{j,\varepsilon }-x^{(1)}_{l,\varepsilon }}{\varepsilon }\right) U^2_{a_l}(\xi )\left( \sum ^3_{m=1}d_{m,l} \frac{\partial \frac{x^i-\xi ^i}{|x-\xi |^3}}{\partial \xi _m}\right) d\xi dx +o\big (\varepsilon ^4\big ), \end{aligned} \end{aligned}$$
(E.5)

and

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( x-\frac{x^{(1)}_{j,\varepsilon }-x^{(1)}_{l,\varepsilon }}{\varepsilon }\right) U^2_{a_l}(\xi )\left( \sum ^3_{m=1}d_{m,l} \frac{\partial \frac{x^i-\xi ^i}{|x-\xi |^3}}{\partial \xi _m}\right) d\xi dx \\&\quad = O\left( \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( x-\frac{x^{(1)}_{j,\varepsilon }-x^{(1)}_{l,\varepsilon }}{\varepsilon }\right) U^2_{a_l}(\xi )|x-\xi |^{-3} d\xi dx\right) = O\big (\varepsilon ^3\big ), \end{aligned} \end{aligned}$$
(E.6)

here we also use the following estimate, which can be found by (A.9),

$$\begin{aligned} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2\left( x-\frac{x^{(1)}_{j,\varepsilon }-x^{(1)}_{l,\varepsilon }}{\varepsilon }\right) U^2_{a_l}(\xi )|x-\xi |^{-\alpha } d\xi dx=O\big (\varepsilon ^\alpha \big ),~\text{ for }~\alpha >0,~\text{ and }~l\ne j. \end{aligned}$$

Similar to (E.5) and (E.6), we have

$$\begin{aligned} \begin{aligned}&\frac{1}{8\pi \varepsilon ^2} \int _{ B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} U_{a_j}^2\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) U_{a_l}\left( \frac{\xi -x^{(2)}_{l,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx=o\big (\varepsilon ^4\big ). \end{aligned} \end{aligned}$$
(E.7)

Then (E.5), (E.6) and (E.7) imply

$$\begin{aligned} \begin{aligned} F_{1,1,3}=o\big (\varepsilon ^4\big ). \end{aligned} \end{aligned}$$
(E.8)

Then (E.1) can be deduced by (E.2), (E.3), (E.4) and (E.8). \(\square \)

Lemma E.2

It holds

$$\begin{aligned} \begin{aligned} F_{1,2}&=\frac{1}{2\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon ^{(1)}(x) U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \big )\eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx +o\big (\varepsilon ^4\big ). \end{aligned} \end{aligned}$$
(E.9)

Proof

First, we write \(F_{1,2}\) as follows:

$$\begin{aligned} F_{1,2}=F_{1,2,1}+F_{1,2,2}+F_{1,2,3}, \end{aligned}$$
(E.10)

where

$$\begin{aligned}&F_{1,2,1}=\frac{1}{4\pi \varepsilon ^2} \int _{ B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon ^{(1)}(x) \left( U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) + U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \\&\quad \eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&F_{1,2,2}=\frac{1}{4\pi \varepsilon ^2} \int _{ B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon ^{(1)}(x)\big ( W^{(1)}_{j,\varepsilon }(\xi )+W^{(2)}_{j,\varepsilon }(\xi )\big )\eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&F_{1,2,3}=\frac{1}{4\pi \varepsilon ^2} \int _{ B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon ^{(1)}(x) \big (w^{(1)}_{\varepsilon }(\xi )+w^{(2)}_{\varepsilon }(\xi )\big )\eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx. \end{aligned}$$

Now by direct calculation, we get

$$\begin{aligned} \begin{aligned} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) -U_{a_j}\left( \frac{x-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) =\,&O\left( \left| \frac{x^{(1)}_{j,\varepsilon }-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right| \right) \cdot \left| \nabla U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }x\right) \right| \\ =\,&O\left( \frac{|x^{(1)}_{j,\varepsilon }-x^{(2)}_{j,\varepsilon }|}{\varepsilon }\right) U_{a_j} \left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) . \end{aligned} \end{aligned}$$
(E.11)

Then by (A.10), (E.11), we have

$$\begin{aligned} \begin{aligned} F_{1,2,1}&=\frac{1}{2\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon ^{(1)}(x) U_{a_j}\\&\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+o\big (\varepsilon ^{4}\big ). \end{aligned} \end{aligned}$$
(E.12)

Also, similar to (D.15), we get

$$\begin{aligned} \begin{aligned} F_{1,2,2}=\,&O\left( \varepsilon ^{-2} \left\| U_{a_j}\left( \frac{\cdot -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right\| _{\varepsilon }\cdot \Vert w_\varepsilon ^{(1)} \Vert _{\varepsilon }\cdot \Vert W^{(1)}_{j,\varepsilon }(\cdot )+W^{(2)}_{j,\varepsilon }(\cdot )\Vert _{\varepsilon }\cdot \Vert \eta _{\varepsilon }\Vert _{\varepsilon } \right) \\&+O\big (e^{-\eta /\varepsilon }\big )= O\big (\varepsilon ^6\big ). \end{aligned} \end{aligned}$$
(E.13)

And by (A.5) and (C.13), we obtain

$$\begin{aligned} \begin{aligned} F_{1,2,3}&=O\left( \varepsilon ^{-4}\left\| U_{a_j}\left( \frac{\cdot -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right\| _{\varepsilon }\Vert w^{(1)}_{\varepsilon }\Vert _{\varepsilon } \cdot \Vert w^{(1)}_{\varepsilon }+w^{(2)}_{\varepsilon }\Vert _{\varepsilon }\cdot \Vert \eta _\varepsilon \Vert _{\varepsilon }\right) =O\big (\varepsilon ^6\big ). \end{aligned} \end{aligned}$$
(E.14)

Then (E.9) can be deduced by (E.10), (E.12), (E.13) and (E.14). \(\square \)

Lemma E.3

It holds

$$\begin{aligned} \begin{aligned} F_{2,1}&=G_2-\frac{1}{2\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon ^{(1)}(x) U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(\xi ) \\&\quad \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx +o\big (\varepsilon ^4\big ), \end{aligned} \end{aligned}$$
(E.15)

where

$$\begin{aligned} G_2=\,&-\frac{1}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3}U^2_{a_j}\left( \frac{x-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \left( U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right. \\&\left. + U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \eta _{\varepsilon }(x)\frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx. \end{aligned}$$

Proof

First, we write \(F_{2,1}\) as follows:

$$\begin{aligned} F_{2,1}=F_{2,1,1}+F_{2,1,2}+F_{2,1,3}+F_{2,1,4}+F_{2,1,5}+F_{2,1,6}, \end{aligned}$$
(E.16)

where

$$\begin{aligned}&F_{2,1,1}=\frac{1}{8\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} \left( U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) + U_{a_j}\left( \frac{x-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \eta _{\varepsilon }(x)U^2_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&F_{2,1,2}=\frac{1}{4\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3}\left( U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) + U_{a_j}\left( \frac{x-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \eta _{\varepsilon }(x)U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) w^{(2)}_{\varepsilon }(\xi )\frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx, \\&F_{2,1,3}=\frac{1}{8\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3}\left( U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) + U_{a_j}\left( \frac{x-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \eta _{\varepsilon }(x)\big (w^{(2)}_{\varepsilon }(\xi )\big )^2\frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx, \\&F_{2,1,4}=\frac{1}{4\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} \left( U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) + U_{a_j}\left( \frac{x-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \eta _{\varepsilon }(x)W^{(2)}_{j,\varepsilon }(\xi ) U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx, \\&F_{2,1,5}=\frac{1}{4\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} \left( U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) + U_{a_j}\left( \frac{x-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \eta _{\varepsilon }(x)w^{(2)}_{\varepsilon }(\xi ) U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx, \\&F_{2,1,6}=\frac{1}{8\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3}\left( U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) + U_{a_j}\left( \frac{x-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right) \eta _{\varepsilon }(x) \big (W^{(2)}_{j,\varepsilon }(\xi )\big )^2\frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx. \end{aligned}$$

Now, by (A.10) and symmetry, we have

$$\begin{aligned} \begin{aligned} F_{2,1,1}= G_{2}+O\big (e^{-\eta /\varepsilon }\big ). \end{aligned} \end{aligned}$$
(E.17)

Also similar to (E.12), we know

$$\begin{aligned} \begin{aligned} F_{2,1,2} =\,&-\frac{1}{2\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon ^{(2)}(x) U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx +o\big (\varepsilon ^4\big )\\ =\,&-\frac{1}{2\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon ^{(1)}(x) U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&+O\left( \left\| U_{a_j}\left( \frac{\cdot -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \right\| ^2_{\varepsilon } \Vert w_\varepsilon ^{(1)}-w_\varepsilon ^{(2)}\Vert _\varepsilon \Vert \eta _{\varepsilon }\Vert _\varepsilon \right) +o\big (\varepsilon ^4\big )\\ =\,&-\frac{1}{2\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) w_\varepsilon ^{(1)}(x) U_{a_j}\left( \frac{\xi -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(\xi ) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx +o\big (\varepsilon ^4\big ). \end{aligned} \end{aligned}$$
(E.18)

Next, by (A.5) and (C.13), we get

$$\begin{aligned} \begin{aligned} F_{2,1,3}&=O\left( \varepsilon ^{-4} \left\| U_{a_j}\left( \frac{\cdot -x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) + U_{a_j}\left( \frac{\cdot -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right\| _{\varepsilon }\cdot \Vert \eta _{\varepsilon }\Vert _{\varepsilon }\cdot \Vert w^{(2)}_{\varepsilon }\Vert _{\varepsilon }^2\right) = O\big (\varepsilon ^6\big ). \end{aligned} \end{aligned}$$
(E.19)

And by (D.6), we obtain

$$\begin{aligned} \begin{aligned} F_{2,1,4}&=O\big (e^{-\eta /\varepsilon }\big )\quad \text{ and }\quad F_{2,1,5}=O\big (\varepsilon ^6\big ). \end{aligned} \end{aligned}$$
(E.20)

Also, \(l\ne j\), similar to (E.5) and (E.6), we have

$$\begin{aligned} \begin{aligned}&\frac{1}{8\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(x) U^2_{a_l}\left( \frac{\xi -x^{(2)}_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&\quad = \frac{\varepsilon ^2}{8\pi } \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}(x)\eta _{j,\varepsilon }(x) U^2_{a_l}\left( \xi +\frac{x^{(1)}_{j,\varepsilon }-x^{(2)}_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+O\big (e^{-\eta /\varepsilon }\big ), \end{aligned} \end{aligned}$$
(E.21)

and

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}(x)\eta _{j,\varepsilon }(x) U^2_{a_l}\left( \xi +\frac{x^{(1)}_{j,\varepsilon }-x^{(2)}_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx\\&\quad = \int _{\mathbb {R}^3}\int _{\mathbb {R}^3}U_{a_j}(x)\left( \sum ^3_{m=1}d_{m,j} \frac{\partial U_{a_j}(x)}{\partial x_m}\right) U^2_{a_l}\left( \xi +\frac{x^{(1)}_{j,\varepsilon }-x^{(2)}_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx \\&\qquad + o\left( \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}(x) U^2_{a_l}\left( \xi +\frac{x^{(1)}_{j,\varepsilon }-x^{(2)}_{l,\varepsilon }}{\varepsilon }\right) \frac{1}{|x-\xi |^2}d\xi dx\right) \\&\quad = O\left( \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U_{a_j}^2(x)U^2_{a_l}\left( \xi +\frac{x^{(1)}_{j,\varepsilon }-x^{(2)}_{l,\varepsilon }}{\varepsilon }\right) |x-\xi |^{-3}d\xi dx\right) +o\big (\varepsilon ^2\big )\\&\quad = O\big (\varepsilon ^3\big )+o\big (\varepsilon ^2\big )=o\big (\varepsilon ^2\big ). \end{aligned} \end{aligned}$$
(E.22)

Similar to (E.21) and (E.22), we obtain

$$\begin{aligned} \begin{aligned} \frac{1}{8\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}&\int _{\mathbb {R}^3} U_{a_j}\left( \frac{x-x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \eta _{\varepsilon }(x) U^2_{a_l}\left( \frac{\xi -x^{(2)}_{l,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx =o\big (\varepsilon ^4\big ). \end{aligned} \end{aligned}$$
(E.23)

Then (E.21), (E.22) and (E.23) imply

$$\begin{aligned} \begin{aligned} F_{2,1,6}=\,&o\big (\varepsilon ^4\big ). \end{aligned} \end{aligned}$$
(E.24)

Then (E.16), (E.17), (E.18), (E.19), (E.20) and (E.24) imply (E.15). \(\square \)

Lemma E.4

It holds

$$\begin{aligned} \begin{aligned} F_{2,3}=-\frac{1}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \big (w^{(1)}_{\varepsilon }(\xi )+w^{(2)}_{\varepsilon }(\xi )\big ) \eta _{\varepsilon }(\xi )\frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+o\big (\varepsilon ^{4}\big ). \end{aligned} \end{aligned}$$
(E.25)

Proof

First, we write \(F_{2,3}\) as follows:

$$\begin{aligned} \begin{aligned} F_{2,3}&=F_{2,3,1}+F_{2,3,2}+F_{2,3,3}+F_{2,3,4}+F_{2,3,5}+F_{2,3,6}, \end{aligned} \end{aligned}$$
(E.26)

where

$$\begin{aligned}&F_{2,3,1}=\frac{1}{8\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} \big (w^{(1)}_{\varepsilon }(x)+w^{(2)}_{\varepsilon }(x)\big ) \eta _{\varepsilon }(x)U^2_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&F_{2,3,2}=\frac{1}{4\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} \big (w^{(1)}_{\varepsilon }(x)+w^{(2)}_{\varepsilon }(x)\big ) \eta _{\varepsilon }(x)U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) w^{(2)}_{\varepsilon }(\xi )\frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx, \\&F_{2,3,3}=\frac{1}{8\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} \big (w^{(1)}_{\varepsilon }(x)+w^{(2)}_{\varepsilon }(x)\big ) \eta _{\varepsilon }(x)\big (w^{(2)}_{\varepsilon }(\xi )\big )^2\frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&F_{2,3,4}=\frac{1}{4\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} \big (w^{(1)}_{\varepsilon }(x)+w^{(2)}_{\varepsilon }(x)\big )\eta _{\varepsilon }(x) W^{(2)}_{j,\varepsilon }(\xi ) U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&F_{2,3,5}=\frac{1}{4\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} \big (w^{(1)}_{\varepsilon }(x)+w^{(2)}_{\varepsilon }(x)\big )\eta _{\varepsilon }(x) w^{(2)}_{\varepsilon }(\xi ) U_{a_j}\left( \frac{\xi -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx,\\&F_{2,3,6}=\frac{1}{8\pi \varepsilon ^2} \int _{B_{\delta }(x_{j,\varepsilon }^{(1)})}\int _{\mathbb {R}^3} \big (w^{(1)}_{\varepsilon }(x)+w^{(2)}_{\varepsilon }(x)\big )\eta _{\varepsilon }(x) \big (W^{(2)}_{j,\varepsilon }(\xi )\big )^2\frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx. \end{aligned}$$

Now by (A.10), (E.11) and symmetry, we have

$$\begin{aligned} \begin{aligned} F_{2,3,1} =-\frac{1}{8\pi \varepsilon ^2} \int _{\mathbb {R}^3}\int _{\mathbb {R}^3} U^2_{a_j}\left( \frac{x-x^{(1)}_{j,\varepsilon }}{\varepsilon }\right) \big (w^{(1)}_{\varepsilon }(\xi )+w^{(2)}_{\varepsilon }(\xi )\big ) \eta _{\varepsilon }(\xi )\frac{x^i-\xi ^i}{|x-\xi |^3}d\xi dx+o\big (\varepsilon ^{4}\big ). \end{aligned} \end{aligned}$$
(E.27)

Next, by (A.5) and (C.13), we get

$$\begin{aligned} \begin{aligned} F_{2,3,2}&=O\left( \varepsilon ^{-4}\Vert w^{(1)}_{\varepsilon }+w^{(2)}_{\varepsilon }\Vert _{\varepsilon } \left\| U_{a_j}\left( \frac{\cdot -x^{(2)}_{j,\varepsilon }}{\varepsilon }\right) \right\| _{\varepsilon } \Vert \eta _{\varepsilon }\Vert _{\varepsilon }\Vert w^{(2)}_{\varepsilon }\Vert _{\varepsilon }\right) = O\big (\varepsilon ^6\big ), \end{aligned} \end{aligned}$$
(E.28)

and

$$\begin{aligned} \begin{aligned} F_{2,3,3}&=O\big ( \varepsilon ^{-4} \Vert w^{(1)}_{\varepsilon }+w^{(2)}_{\varepsilon }\Vert _{\varepsilon } \Vert \eta _{\varepsilon }\Vert _{\varepsilon }\Vert w^{(2)}_{\varepsilon }\Vert ^2_{\varepsilon }\big )= O\big (\varepsilon ^8\big ). \end{aligned} \end{aligned}$$
(E.29)

Also by (D.6), we know

$$\begin{aligned} \begin{aligned} F_{2,3,4}&=O\big (e^{-\eta /\varepsilon }\big )~\text{ and }~ F_{2,3,5}=O\big (\varepsilon ^6\big ). \end{aligned} \end{aligned}$$
(E.30)

Next, similar to (D.15), we obtain

$$\begin{aligned} \begin{aligned} F_{2,3,6}=O\big (\varepsilon ^{-2}\Vert w^{(1)}_{\varepsilon }+w^{(2)}_{\varepsilon }\Vert _{\varepsilon } \Vert W^{(2)}_{j,\varepsilon }\Vert _{\varepsilon } \Vert \eta _{\varepsilon }\Vert _{\varepsilon } \big )+O\big (e^{-\eta /\varepsilon }\big )=O\big (\varepsilon ^6 \big ). \end{aligned} \end{aligned}$$
(E.31)

Then (E.26), (E.27), (E.28), (E.29), (E.30) and (E.31) imply (E.25). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Peng, S. & Wang, C. Uniqueness of positive solutions with concentration for the Schrödinger–Newton problem. Calc. Var. 59, 60 (2020). https://doi.org/10.1007/s00526-020-1726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1726-6

Mathematics Subject Classification

Navigation