Skip to main content
Log in

Regularity of minimizers of a tensor-valued variational obstacle problem in three dimensions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Motivated by Ball and Majumdar’s modification of Landau-de Gennes model for nematic liquid crystals, we study energy-minimizer Q of a tensor-valued variational obstacle problem in a bounded 3-D domain with prescribed boundary data. The energy functional is designed to blow up as Q approaches the obstacle. Under certain assumptions, especially on blow-up profile of the singular bulk potential, we prove higher interior regularity of Q, and show that the contact set of Q is either empty, or small with characterization of its Hausdorff dimension. We also prove boundary partial regularity of the energy-minimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M., Majumdar, A.: Nematic liquid crystals: from Maier–Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525(1), 1–11 (2010)

    Article  Google Scholar 

  2. Bauman, P., Phillips, D.: Regularity and the behavior of eigenvalues for minimizers of a constrained Q-tensor energy for liquid crystals. Calc. Var. Partial Differ. Equ. 55(4), 81 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Davis, T.A., Gartland Jr., E.C.: Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35(1), 336–362 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Gennes, P., Prost, J.: The Physics of Liquid Crystals, vol. 83. Oxford University Press, Oxford (1995)

    Google Scholar 

  5. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  6. Evans, L.C., Gariepy, R.F.: Blowup, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J. 36(2), 361–371 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, L.C., Kneuss, O., Tran, H.: Partial regularity for minimizers of singular energy functionals, with application to liquid crystal models. Trans. Am. Math. Soc. 368(5), 3389–3413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feireisl, E., Rocca, E., Schimperna, G., Zarnescu, A.: Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential. Commun. Math. Sci. 12(2), 317–343 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feireisl, E., Schimperna, G., Rocca, E., Zarnescu, A.: Nonisothermal nematic liquid crystal flows with the Ball–Majumdar free energy. Annali di Matematica Pura ed Applicata (1923-) 194(5), 1269–1299 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iyer, G., Xu, X., Zarnescu, A.D.: Dynamic cubic instability in a 2D Q-tensor model for liquid crystals. Math. Models Methods Appl. Sci. 25(08), 1477–1517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Katriel, J., Kventsel, G., Luckhurst, G., Sluckin, T.: Free energies in the Landau and molecular field approaches. Liq. Cryst. 1(4), 337–355 (1986)

    Article  Google Scholar 

  12. Kitavtsev, G., Robbins, J.M., Slastikov, V., Zarnescu, A.: Liquid crystal defects in the Landau-de Gennes theory in two dimensions beyond the one-constant approximation. Math. Models Methods Appl. Sci. 26(14), 2769–2808 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, F.H., Yang, X.: Geometric Measure Theory: An Introduction. Science Press, Beijing (2002)

    MATH  Google Scholar 

  14. Longa, L., Monselesan, D., Trebin, H.R.: An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liq. Cryst. 2(6), 769–796 (1987)

    Article  Google Scholar 

  15. Mottram, N.J., Newton, C.J.: Introduction to Q-tensor theory (2014). arXiv:1409.3542

  16. Wilkinson, M.: Strictly physical global weak solutions of a Navier–Stokes Q-tensor system with singular potential. Arch. Ration. Mech. Anal. 218(1), 487–526 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We want to thank Professor Fanghua Lin for introducing us to this obstacle problem, and for his valuable comments and suggestions in the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Geng.

Additional information

Communicated by J.Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Science Foundation (DMS-1501000).

Appendices

Proof of (2.6)

In order to prove (2.6), we first prove the following lemma.

Lemma A.1

Let \(M,\,N,\,P\) be \(3\times 3\)-symmetric traceless matrices. Then

$$\begin{aligned} \Vert M\Vert _2^2\le \frac{2}{3}|M|^2, \end{aligned}$$
(A.1)

and

$$\begin{aligned} \sum \limits _{i=1}^3(M_{i1}+N_{i2}+P_{i3})^2\le \frac{5}{3}(|M|^2+|N|^2+|P|^2). \end{aligned}$$
(A.2)

Proof

To prove (A.1), we can only consider the case when M is diagonal, due to the fact that M is symmetric and both Frobenius norm and matrix 2-norm are unitarily invariant. Without loss of generality we assume \(M=\mathrm {diag}\{\lambda _1,\lambda _2,-\lambda _1-\lambda _2\}\) with \(\lambda _1\lambda _2\ge 0\), we deduce that

$$\begin{aligned} 2|M|^2-3\Vert M\Vert _2^2 =2(\lambda _1^2+\lambda _2^2+(\lambda _1+\lambda _2)^2)-3(\lambda _1+\lambda _2)^2=2(\lambda _1-\lambda _2)^2\ge 0. \end{aligned}$$

Then (A.1) follows. The equality holds if and only if M has two equal eigenvalues.

For (A.2), we compute

$$\begin{aligned} \begin{aligned}&5(|M|^2+|N|^2+|P|^2)-3\sum \limits _{i=1}^3(M_{i1}+N_{i2}+P_{i3})^2\\&\quad \ge \left( 5(M_{11}^2+M_{22}^2+M_{33}^2+2N_{12}^2+2P_{13}^2)-3(M_{11}+N_{12}+P_{13})^2 \right) \\&\qquad +\left( 5(N_{11}^2+N_{22}^2+N_{33}^2+2M_{21}^2+2P_{23}^2)-3(M_{21}+N_{22}+P_{23})^2 \right) \\&\qquad +\left( 5(P_{11}^2+P_{22}^2+P_{33}^2+2M_{31}^2+2N_{32}^2)-3(M_{31}+N_{32}+P_{33})^2 \right) . \end{aligned} \end{aligned}$$
(A.3)

The equality holds if and only if \(M_{23}=N_{13}=P_{12}=0\). It suffices to prove non-negativity of each term on the right hand side of (A.3). We only show this for the first term; the others can be handled similarly.

$$\begin{aligned}&5(M_{11}^2+M_{22}^2+M_{33}^2+2N_{12}^2+2P_{13}^2)-3(M_{11}+N_{12}+P_{13})^2\\&\quad \ge \left( 5+\frac{5}{2}-3\right) M_{11}^2+7N_{12}^2+7P_{13}^2-6M_{11}N_{12}-6M_{11}P_{13}-6N_{12}P_{13}\\&\quad = \left( \frac{3}{2}M_{11}-2N_{12}\right) ^2+\left( \frac{3}{2} M_{11}-2P_{13}\right) ^2+3(N_{12}-P_{13})^2\ge 0. \end{aligned}$$

Here we used \(\sum _{i=1}^3 M_{ii}=0\) in the second line. The equality holds if and only if

$$\begin{aligned} N_{12}=P_{13}=\frac{3}{4}M_{11}, \quad M_{22}=M_{33}=-\frac{1}{2} M_{11}. \end{aligned}$$

This completes the proof of (A.2). \(\square \)

To this end, (2.6) follows immediately from the lemma if we take \(M=D_k^h Q\) in (A.1), and take \(M=D_k^h \partial _1 Q,\, N=D_k^h \partial _2 Q,\, P=D_k^h \partial _3 Q\) in (A.3).

Formula of p(A)

Lemma B.1

For \(A>-\frac{3}{5}\), let

$$\begin{aligned} p(A) {:}{=} \sup _{\omega \in [0,1],\,\omega +\frac{5}{3}A\ge 0}p(A,\omega ), \end{aligned}$$

where \(p(A,\omega )\) is defined in (2.7). Then p(A) is given by (1.10).

Proof

We rewrite (2.7) as

$$\begin{aligned} p(A,\omega ) = 1+\frac{\frac{9}{5}\left( \omega +\frac{5}{3} A\right) +\sqrt{\frac{9}{5}\left( \omega +\frac{5}{3} A\right) \left[ \left( \frac{9}{5}-2A^2\right) \left( \omega +\frac{5}{3} A\right) +2A^2\left( 1+\frac{5}{3}A\right) \right] }}{2A^2}. \end{aligned}$$
(B.1)

It is easy to see that if \(\frac{9}{5}-2A^2 \ge 0\), \(p(A,\omega )\) achieves its supremum at \(\omega = 1\), which gives

$$\begin{aligned} p(A) = 1+\frac{3}{A}+\frac{9}{5A^2}. \end{aligned}$$

It suffices to consider \(2A^2 > \frac{9}{5}\), i.e., \(A> \frac{3\sqrt{10}}{10}\). Define

$$\begin{aligned} g(y) {:}{=} \frac{9}{5}y+\sqrt{\frac{9}{5}y(B_1y+B_2)}, \end{aligned}$$

where

$$\begin{aligned} B_1 = \frac{9}{5}-2A^2,\quad B_2 = 2A^2\left( 1+\frac{5}{3}A\right) . \end{aligned}$$

Then

$$\begin{aligned} p(A,\omega ) = 1+(2A^2)^{-1}g\left( \omega +\frac{5}{3} A\right) . \end{aligned}$$

Since

$$\begin{aligned} g'(y) = \frac{9}{5}+\sqrt{\frac{9}{5}}\cdot \frac{2B_1 y+ B_2}{2\sqrt{y(B_1y+B_2)}}, \end{aligned}$$

we find that \(g'(y)<0\) if and only if

$$\begin{aligned} B_1 y +\frac{B_2}{2}< -\sqrt{\frac{9}{5} y(B_1y+B_2)}, \end{aligned}$$

which is equivalent to

$$\begin{aligned} \left( B_1 y +\frac{B_2}{2}\right) ^2>\frac{9}{5} y(B_1y+B_2)\quad \text{ and } \quad B_1y +\frac{B_2}{2}<0. \end{aligned}$$

Solving these inequalities under the assumption \(A>\frac{3\sqrt{10}}{10}\), we find that

$$\begin{aligned} y>\frac{A\left( 1+\frac{5}{3}A\right) }{2A- \sqrt{\frac{18}{5}}}=:y_{+}. \end{aligned}$$

This implies that within the domain of g(y), i.e.,

$$\begin{aligned} y = \omega +\frac{5}{3}A \in \left[ \frac{5}{3} A, 1+\frac{5}{3}A\right] . \end{aligned}$$

g(y) is decreasing if and only if \(y\ge y_+\).

  1. 1.

    When

    $$\begin{aligned} 1+\frac{5}{3} A \le y_+\quad \Leftrightarrow \quad A\in \left( \frac{3\sqrt{10}}{10},\sqrt{\frac{18}{5}}\right] , \end{aligned}$$

    \(p(A,\cdot )\) is increasing on [0, 1]. Hence,

    $$\begin{aligned} p(A) = p(A,1) = 1+\frac{3}{A}+\frac{9}{5A^2}. \end{aligned}$$
  2. 2.

    When

    $$\begin{aligned} \frac{5}{3} A< y_+< 1+\frac{5}{3} A\quad \Leftrightarrow \quad A\in \left[ \sqrt{\frac{18}{5}}, \frac{3}{5}+\sqrt{\frac{18}{5}}\right] , \end{aligned}$$

    then supremum of \(p(A,\cdot )\) is achieved at \(\omega _*\) such that \(\omega _*+\frac{5}{3} A = y_+\). Combining this with (B.1) yields that

    $$\begin{aligned} p(A) = 1+\frac{3+5A}{2\sqrt{10}A- 6}. \end{aligned}$$
  3. 3.

    When

    $$\begin{aligned} \frac{5}{3} A \ge y_+\quad \Leftrightarrow \quad A\ge \frac{3}{5}+\sqrt{\frac{18}{5}}, \end{aligned}$$

    \(p(A,\cdot )\) is decreasing on [0, 1]. Hence,

    $$\begin{aligned} p(A) = p(A,0) = 1+\frac{3+\sqrt{9+6A}}{2A}. \end{aligned}$$

This completes the derivation. \(\square \)

Study of d(Q)

We study the properties of d(Q) in this section. It is known that every \(Q\in {\mathcal {Q}}_{phy}\) can be represented by

$$\begin{aligned} Q=\lambda _1 n\otimes n+\lambda _2 m\otimes m+\lambda _3 p\otimes p, \end{aligned}$$
(C.1)

where

$$\begin{aligned} \lambda _1+\lambda _2+\lambda _3=0,\, \lambda _i\in \left[ -\frac{1}{3},\frac{2}{3}\right] ,\,\lambda _1\le \lambda _2\le \lambda _3, \end{aligned}$$
(C.2)

and where (nmp) forms an orthonormal frame in \({\mathbb {R}}^3\). Then we have the following characterization of d(Q).

Lemma C.1

Let \(Q\in {\mathcal {Q}}_{phy}\) be given by (C.1) and (C.2). Then \(d(Q)=|Q-Q'|\), where

$$\begin{aligned} Q'=-\frac{1}{3} n\otimes n+\left( \lambda _2+\frac{\lambda _1+\frac{1}{3}}{2}\right) m\otimes m+\left( \lambda _3+\frac{\lambda _1+\frac{1}{3}}{2}\right) p\otimes p. \end{aligned}$$

As a result,

$$\begin{aligned} d(Q) = \frac{\sqrt{6}}{2}\left( \lambda _1+\frac{1}{3}\right) . \end{aligned}$$
(C.3)

Proof

Since the distance between two matrices is invariant under orthogonal transforms, without loss of generality, we may assume \(n = (1,0,0)\), \(m = (0,1,0)\) and \(p = (0,0,1)\). Let \(s=2\lambda _1+\lambda _2\) and \(r=2\lambda _2+\lambda _1\). Then (C.1) becomes

$$\begin{aligned} Q=s\left( n\otimes n-\frac{1}{3}I\right) +r\left( m\otimes m-\frac{1}{3} I\right) , \quad \frac{r-1}{2}\le s\le r\le 0. \end{aligned}$$

Now we are going to look for \(Q'\in \partial {\mathcal {Q}}_{phy}\) such that \(|Q-Q'|\) is minimized. Assume

$$\begin{aligned} Q'=s'\left( n'\otimes n'-\frac{1}{3}I\right) +r'\left( m'\otimes m'-\frac{1}{3} I\right) , \end{aligned}$$

with

$$\begin{aligned} n' = (a,b,c),\quad m'=(u,v,w),\quad \frac{r'-1}{2}\le s'\le r'\le 0, \end{aligned}$$

and \((n',m')\) being an orthonormal pair.

First we are going to show that when \(s',r'\) is fixed, \(|Q-Q'|\) is minimized when \(n'=n,\,m'=m\). We calculate that

$$\begin{aligned} \begin{aligned}&|Q-Q'|^2\\&\quad =|Q|^2+|Q'|^2\\&\qquad -2\left[ s\left( n\otimes n-\frac{1}{3}I\right) +r\left( m\otimes m-\frac{1}{3} I\right) \right] :\left[ s'\left( n'\otimes n'-\frac{1}{3}I\right) +r'\left( m'\otimes m'-\frac{1}{3} I\right) \right] \\&\quad =C(s,r,s',r')-2\left[ ss'\left( ( n,n')^2-\frac{1}{3}\right) +sr'\left( ( n,m')^2-\frac{1}{3}\right) \right. \\&\qquad \left. +rs'\left( (m,n')^2-\frac{1}{3}\right) +rr'\left( ( m,m')^2-\frac{1}{3}\right) \right] \\&\quad = C_(s,r,s',r')-2(ss'a^2+rs'b^2+sr'u^2+rr'v^2). \end{aligned} \end{aligned}$$

Here \(C(s,r,s',r')\) represents some constant depending only on s, r, \(s'\) and \(r'\), whose definition changes from line to line.

Then it suffices to show that

$$\begin{aligned} ss'a^2+rs'b^2+sr'u^2+rr'v^2\le ss'+rr'. \end{aligned}$$

Recall that

$$\begin{aligned} a^2+b^2+c^2=1,\quad u^2+v^2+w^2=1,\quad au+bv+cw=0. \end{aligned}$$
(C.4)

We claim that \(u^2\le b^2+c^2\). Indeed, by (C.4),

$$\begin{aligned} a^2u^2=|bv+cw|^2\le (b^2+c^2)(v^2+w^2)=(1-a^2)(1-u^2), \end{aligned}$$

which implies that \(u^2\le 1-a^2=b^2+c^2\). Then we deduce that

$$\begin{aligned} \begin{aligned}&ss'+rr'-(ss'a^2+rs'b^2+sr'u^2+rr'v^2)\\&\quad = (s-r)s' (b^2+c^2)-(s-r)r'u^2+rr'w^2+rs'c^2\\&\quad \ge (s-r)(s'-r')u^2\ge 0. \end{aligned} \end{aligned}$$

Here we used (C.4) and the facts that \(s\le r\le 0\) and \(s'\le r' \le 0\).

To this end, we have showed that if Q is given by (C.1) and if \(Q'\in \partial {\mathcal {Q}}_{phy}\) minimizes \(|Q-Q'|\), \(Q'\) should be represented by

$$\begin{aligned} Q'=\mu _1 n\otimes n+\mu _2 m\otimes m+\mu _3 p\otimes p, \end{aligned}$$

for some \(-1/3= \mu _1\le \mu _2\le \mu _3\le 2/3\) such that \(\mu _1+\mu _2+\mu _3 =0\). The constraints on \(\mu _i\) are due to the characterization of \(\partial {\mathcal {Q}}_{phy}\) in (1.2). Moreover,

$$\begin{aligned} |Q-Q'|=\sqrt{(\lambda _1-\mu _1)^2+(\lambda _2-\mu _2)^2+(\lambda _3-\mu _3)^2}. \end{aligned}$$

Therefore, \(|Q-Q'|\) achieves its minimum if

$$\begin{aligned} \mu _1=-\frac{1}{3},\quad \mu _2=\lambda _2+\frac{\lambda _1+\frac{1}{3}}{2},\quad \mu _3=\lambda _3+\frac{\lambda _1+\frac{1}{3}}{2}. \end{aligned}$$

(C.3) follows immediately. This completes the proof. \(\square \)

An immediate consequence of Lemma C.1 is

Lemma C.2

d(Q) is Lipschitz continuous in \({\mathcal {Q}}_{phy}\).

Proof

The difference between the smallest eigenvalues of two matrice in \({\mathcal {Q}}_{phy}\) can be bounded by their distance. Combining this fact with Lemma C.1, we complete the proof of the Lemma. \(\square \)

A construction of \(\{f_b^\varepsilon \}\)

In this section, we provide a construction of \(\{f_b^\varepsilon \}_{0<\varepsilon \ll 1}\) used in Sect. 4. For convenience, we recall the conditions on \(\{f_b^\varepsilon \}_{0<\varepsilon \ll 1}\):

(i\('\)):

For all \(0<\varepsilon \ll 1\), \(f_b^\varepsilon (Q)\in [0, \infty )\) for all \(Q\in {\mathcal {Q}}\);

(ii\('\)):

\(f_b^\varepsilon \) are convex and smooth in \({\mathcal {Q}}\);

(iii\('\)):

\(f_b^\varepsilon (Q)\le f_b(Q)\) for all \(Q\in {\mathcal {Q}}\).

(iv\('\)):

Moreover,

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0^+} f_b^\varepsilon (Q) = f_b(Q),\quad \lim _{\varepsilon \rightarrow 0^+} Df_b^\varepsilon (Q) = Df_b(Q) \end{aligned}$$

locally uniformly in \({\mathcal {Q}}^{\mathrm {o}}_{phy}\).

Here \(Df_b^\varepsilon (Q)\) denotes the gradient of \(f_b^\varepsilon \) with respect to Q.

Proof of Lemma 4.1

Define

$$\begin{aligned} {\mathcal {Q}}_{phy}^\varepsilon = \{Q\in {\mathcal {Q}}^{\mathrm {o}}_{phy}:\, f_b(Q)< \varepsilon ^{-1}\}. \end{aligned}$$

Take \(\varepsilon \ll 1\), such that \({\mathcal {Q}}_{phy}^\varepsilon \) is a non-empty open subset of \({\mathcal {Q}}_{phy}\). Then we define on the entire \({\mathcal {Q}}\) that

$$\begin{aligned} F_b^\varepsilon (Q) = \sup _{Q'\in {\mathcal {Q}}_{phy}^\varepsilon } f_b(Q')+Df_b(Q')(Q-Q'). \end{aligned}$$

It is not difficult to show that \(\{F_b^\varepsilon \}_{0<\varepsilon \ll 1}\) satisfies all the conditions above except for the smoothness issue. Indeed, \(F_b^\varepsilon \equiv f_b\) on \({\mathcal {Q}}_{phy}^\varepsilon \), while outside \({\mathcal {Q}}_{phy}^\varepsilon \), \(F_b^\varepsilon \) is only Lipschitz continuous and \(DF_b^\varepsilon \) exists in the \(L^\infty \)-sense but may not be well-defined pointwise. In particular, for all \(Q_1,Q_2\in {\mathcal {Q}}\),

$$\begin{aligned} |F_b^\varepsilon (Q_1)-F_b^\varepsilon (Q_2)|\le |Q_1-Q_2|\sup _{{\mathcal {Q}}_{phy}^\varepsilon }|Df_b| =: |Q_1-Q_2|\omega _\varepsilon . \end{aligned}$$
(D.1)

Note that \(\omega _\varepsilon \rightarrow +\infty \) as \(\varepsilon \rightarrow 0^+.\)

We shall make a little modification of \(\{F_b^\varepsilon \}\) to construct smooth \(\{f_b^\varepsilon \}\). Let \(\phi \) be a non-negative \(C_0^\infty \)-mollifier in \({\mathcal {Q}}\) supported on the unit ball, such that \(\int _{\mathcal {Q}}\phi (Q)\,dQ = 1\). Then we define

$$\begin{aligned} f_b^\varepsilon (Q) = \int _{{\mathcal {Q}}} \phi (Q')F_b^\varepsilon (Q-\varepsilon \omega _\varepsilon ^{-1} Q')\,dQ'-\varepsilon . \end{aligned}$$

We derive that for arbitrary \(Q\in {\mathcal {Q}}\),

$$\begin{aligned} \begin{aligned} |f_b^\varepsilon (Q)+\varepsilon -F_b^\varepsilon (Q)| \le&\; \int _{{\mathcal {Q}}}\phi (Q')|F_b^\varepsilon (Q-\varepsilon \omega _\varepsilon ^{-1} Q')-F_b^\varepsilon (Q)|\,dQ'\\ \le&\; \int _{{\mathcal {Q}}}\phi (Q')\cdot \varepsilon \omega _\varepsilon ^{-1}\cdot \omega _\varepsilon \,dQ'= \varepsilon . \end{aligned} \end{aligned}$$
(D.2)

In the first inequality, we used the fact that \(\phi \) is non-negative and normalized; in the second inequality, we applied (D.1) as well as that \(\phi \) is supported on the unit ball in \({\mathcal {Q}}\). (D.2) implies that \(F_b^\varepsilon (Q)-2\varepsilon \le f_b^\varepsilon (Q)\le F_b^\varepsilon (Q)\le f_b(Q)\).

It is then easy to verify that \(\{f_b^\varepsilon \}_{0<\varepsilon \ll 1}\) satisfies all the conditions we need. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Z., Tong, J. Regularity of minimizers of a tensor-valued variational obstacle problem in three dimensions. Calc. Var. 59, 57 (2020). https://doi.org/10.1007/s00526-020-1717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1717-7

Mathematics Subject Classification

Navigation