Skip to main content
Log in

Abstract

We study an old variational problem formulated by Euler as Proposition 53 of his Scientia Navalis by means of the direct method of the calculus of variations. Precisely, through relaxation arguments, we prove the existence of minimizers. We fully investigate the analytical structure of the minimizers in dependence of the geometric parameters and we identify the ranges of uniqueness and non-uniqueness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambrosio, L., Dal Maso, G.: On the relaxation in \(BV(\Omega; {\mathbf{R}}^m)\) of quasi-convex integrals. J. Funct. Anal. 109, 76–97 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Belloni, M., Kawohl, B.: A paper of Legendre revisited. Forum Math. 9(5), 655–667 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Belloni, M., Wagner, A.: Newton’s problem of minimal resistance in the class of bodies with prescribed volume. J. Convex Anal. 10(2), 491–500 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Bolza, O.: Vorlesungen über Variationsrechnung. Verlag von B.G. Teubner, Leipzig (1909)

    MATH  Google Scholar 

  5. Buttazzo, G.: A survey on the Newton problem of optimal profiles. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering. Volume 33 of the Series Springer Optimization and Its Applications, pp. 33–48. Springer, Berlin (2009)

    Google Scholar 

  6. Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Volume 207 of Pitman Research Notes in Mathematics. Longman Scientific, Harlow (1989)

  7. Buttazzo, G., Kawohl, B.: On Newton’s problem of minimal resistance. Math. Intell. 15(4), 7–12 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Brock, F., Ferone, V., Kawohl, B.: A symmetry problem in the calculus of variations. Calc. Var. Partial Differ. Equ. 4, 593–599 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions. Math. Nachr. 173, 71–89 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Buttazzo, G., Guasoni, P.: Shape optimization problems over classes of convex domains. J. Convex Anal. 4, 343–351 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Comte, M., Lachand-Robert, T.: Newton’s problem of the body of minimal resistance under a single-impact assumption. Calc. Var. Partial Differ. Equ. 12, 173–211 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Comte, M., Lachand-Robert, T.: Existence of minimizers for the Newton’s problem of the body of minimal resistance under a single-impact assumption. J. Anal. Math. 83, 313–335 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Dean, B., Bhushan, B.: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil. Trans. R. Soc. A 368, 4775–4806 (2010)

    Google Scholar 

  14. Euler, L.: Scientia navalis. St. Petersburg: imperial academy of sciences, volume 1 (1749). In: Truesdell, C. (ed.), Leonhard Euler, Opera Omnia, vol. 2/18. Birkhäuser (1967)

  15. Horstmann, D., Kawohl, B., Villaggio, P.: Newton’s aerodynamic problem in the presence of friction. Nonlinear Differ. Equ. Appl. 9, 295–307 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Goldstine, H.H.: A History of the Calculus of Variations from the 17th Through the 19th Century. Springer, Heidelberg (1980)

    MATH  Google Scholar 

  17. Lachand-Robert, T., Oudet, É.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16, 368–379 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Lachand-Robert, T., Peletier, M.A.: An example of non-convex minimization and an application to Newton’s problem of the body of least resistance. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2), 179–198 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Lachand-Robert, T., Peletier, M.A.: Newton’s problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226, 153–176 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Legendre, A. M.: Memoires des L’Academie Royale des Sciences, annee 1786 Paris, pp 7–37 (1788)

  21. Light, G.H.: The intrinsic equation for Euler’s resistance integral. Bull. Am. Math. Soc. 24(10), 480–481 (1918)

    MathSciNet  Google Scholar 

  22. Miele, A.: Theory of Aerodynamic Shapes. Academic Press, New York (1965)

    MATH  Google Scholar 

  23. Marcellini, P.: Nonconvex integrals of the calculus of variations. In: Methods of Nonconvex Analysis (Varenna, 1989). Lecture Notes in Mathematics, vol. 1446, pp. 16–57. Springer, Berlin (1990)

  24. Mainini, E., Monteverde, M., Oudet, E., Percivale, D.: Newton’s aerodynamic for non convex bodies. Rend. Lincei Mat. Appl. 28(4), 885–896 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Mainini, E., Monteverde, M., Oudet, E., Percivale, D.: The minimal resistance problem in a class of non convex bodies. ESAIM Control Optim. Calc. Var. 25, 27 (2019)

    MathSciNet  Google Scholar 

  26. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids, 2nd edn. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  27. Newton, I.: Philosophiae Naturalis Principia Mathematica. Londini (1687)

  28. Plakhov, A.: The problem of minimal resistance for functions and domains. SIAM J. Math. Anal. 46, 2730–2742 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Plakhov, A.: Newton’s problem of minimal resistance under the single impact assumption. Nonlinearity 29, 465–488 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Whiteside, D.T.: The Mathematical Papers of Isaac Newton, vol. VI. Cambridge University Press, London (1974)

    Google Scholar 

Download references

Acknowledgements

The authors are members of the GNAMPA group of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Mainini.

Additional information

Communicated by C. de Lellis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddalena, F., Mainini, E. & Percivale, D. Euler’s optimal profile problem. Calc. Var. 59, 56 (2020). https://doi.org/10.1007/s00526-020-1707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1707-9

Mathematics Subject Classification

Navigation