Skip to main content
Log in

Robust quantile estimation under bivariate extreme value models

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

In risk quantification of extreme events in multiple dimensions, a correct specification of the dependence structure among variables is difficult due to the limited size of effective data. This paper studies the problem of estimating quantiles for bivariate extreme value distributions, considering that an estimated Pickands dependence function may deviate from the truth within some fixed distance. Our method thus finds optimal upper and lower bounds for the true but unknown dependence function, based on which robust quantile bounds are obtained. A simulation study shows the usefulness of our robust estimates that can supplement traditional error estimation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beirlant, J., Fraga Alves, I., Gomes, I.: Tail fitting for truncated and non-truncated Pareto-type distributions. Extremes 19(3), 429–462 (2016)

    Article  MathSciNet  Google Scholar 

  • Blanchet, J., Murthy, K.R.: On distributionally robust extreme value analysis. Preprint, Available at arXiv:1601.06858 (2016a)

  • Blanchet, J., Murthy, K.R.: Quantifying distributional model risk via optimal transport. Preprint, Available at arXiv:1604.01446 (2016b)

  • Blanchet, J., Lam, H., Tang, Q., Yuan, Z.: Mitigating extreme risks through securitization. Tech. rep. the Society of Actuaries (SOA) (2017)

  • Boldi, M.O., Davison, A.: A mixture model for multivariate extremes. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(2), 217–229 (2007)

    Article  MathSciNet  Google Scholar 

  • Breuer, T., Csiszár, I.: Measuring distribution model risk. Math. Financ. 26(2), 395–411 (2016)

    Article  MathSciNet  Google Scholar 

  • Bücher, A., Dette, H., Volgushev, S.: New estimators of the Pickands dependence function and a test for extreme-value dependence. Ann. Stat. 39(4), 1963–2006 (2011)

    Article  MathSciNet  Google Scholar 

  • Bücher, A., Segers, J.: Extreme value copula estimation based on block maxima of a multivariate stationary time series. Extremes 17(3), 495–528 (2014)

    Article  MathSciNet  Google Scholar 

  • Caires, S.: A comparative simulation study of the annual maxima and the peaks-over-threshold methods. J. Offshore Mech. Arctic Eng. 138(5), 051,601 (2016)

    Article  Google Scholar 

  • de Carvalho, M., Oumow, B., Segers, J., Warchoł, M.: A Euclidean likelihood estimator for bivariate tail dependence. Commun. Stat. Theory Methods 42(7), 1176–1192 (2013)

    Article  MathSciNet  Google Scholar 

  • Castro Camilo, D., de Carvalho, M.: Spectral density regression for bivariate extremes. Stoch. Env. Res. Risk A. 31(7), 1603–1613 (2017)

    Article  Google Scholar 

  • Castro Camilo, D., de Carvalho, M., Wadsworth, J.: Time-varying extreme value dependence with application to leading European stock markets. Ann. Appl. Stat. 12(1), 283–309 (2018)

    Article  MathSciNet  Google Scholar 

  • De Haan, L., Ferreira, A.: Extreme value theory: An introduction. Springer Science & Business Media (2007)

  • Degen, M., Embrechts, P.: EVT-based estimation of risk capital and convergence of high quantiles. Adv. Appl. Probab. 40(3), 696–715 (2008)

    Article  MathSciNet  Google Scholar 

  • Einmahl, J.H., Li, J., Liu, R.Y.: Thresholding events of extreme in simultaneous monitoring of multiple risks. J. Am. Stat. Assoc. 104(487), 982–992 (2009a)

    Article  MathSciNet  Google Scholar 

  • Einmahl, J.H.J., Segers, J.: Maximum empirical likelihood estimation of the spectral measure of an extreme-value distribution. Ann. Stat. 37, 2953–2989 (2009b)

    Article  MathSciNet  Google Scholar 

  • Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling extremal events: For insurance and finance. Springer Science & Business Media, vol. 33, Berlin (2013)

  • Engeland, K., Hisdal, H., Frigessi, A.: Practical extreme value modelling of hydrological floods and droughts: A case study. Extremes 7(1), 5–30 (2004)

    Article  MathSciNet  Google Scholar 

  • Engelke, S., Ivanovs, J.: Robust bounds in multivariate extremes. Ann. Appl. Probab. 27(6), 3706–3734 (2017)

    Article  MathSciNet  Google Scholar 

  • Feng, Y., Schlögl, E.: Model risk measurement under wasserstein distance. preprint (2018)

  • Ferreira, A., de Haan, L.: On the block maxima method in extreme value theory: PWM estimators. Ann. Stat. 43(1), 276–298 (2015)

    Article  MathSciNet  Google Scholar 

  • Gao, R., Kleywegt, A.J.: Distributionally robust stochastic optimization with dependence structure. Tech rep (2017)

  • Genest, C., Kojadinovic, I., Nešlehová, J., Yan, J.: A goodness-of-fit test for bivariate extreme-value copulas. Bernoulli 17(1), 253–275 (2011)

    Article  MathSciNet  Google Scholar 

  • Glasserman, P., Xu, X.: Robust risk measurement and model risk. Quant. Financ. 14(1), 29–58 (2014)

    Article  MathSciNet  Google Scholar 

  • Gudendorf, G., Segers, J.: Extreme-value copulas. Copula Theory and Its Applications. Lect. Notes Stat. 198, 127–145 (2010)

    Article  Google Scholar 

  • Gürtler, M., Hibbeln, M., Winkelvos, C.: The impact of the financial crisis and natural catastrophes on cat bonds. J. Risk Insur. 83(3), 579–612 (2016)

    Article  Google Scholar 

  • Hanson, T.E., de Carvalho, M., Chen, Y.: Bernstein polynomial angular densities of multivariate extreme value distributions. Stat. Probab. Lett. 128, 60–66 (2017)

    Article  MathSciNet  Google Scholar 

  • Hu, Z., Hong, L.J.: Kullback-Leibler divergence constrained distributionally robust optimization. Available at Optimization Online (2013)

  • Jenkinson, A.F.: The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 87, 145–158 (1955)

    Google Scholar 

  • Kelly, B., Jiang, H.: Tail risk and asset prices. Rev. Financ. Stud. 27(10), 2841–2871 (2014)

    Article  Google Scholar 

  • Lam, H.: Robust sensitivity analysis for stochastic systems. Math. Oper. Res. 41(4), 1248–1275 (2016)

    Article  MathSciNet  Google Scholar 

  • Luenberger, D.G.: Optimization by vector space methods. Wiley, New York (1969)

    MATH  Google Scholar 

  • Madsen, H., Pearson, C.P., Rosbjerg, D.: Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 2. regional modeling. Water Resour. Res. 33(4), 759–769 (1997)

    Article  Google Scholar 

  • Reiss, R.D., Thomas, M., Reiss, R.: Statistical analysis of extreme values. Springer, Berlin, vol. 2 (2007)

  • Resnick, S.I.: Extreme values, regular variation and point processes. Springer, Berlin (2013)

  • Schneider, J., Schweizer, N.: Robust measurement of (heavy-tailed) risks: Theory and implementations. J. Econ. Dyn. Control. 61, 183–203 (2015)

    Article  MathSciNet  Google Scholar 

  • Stupfler, G., Yang, F.: Analyzing and predicting cat bond premiums: a financial loss premium principle and extreme value modeling. ASTIN Bullet. J. IAA 48(1), 375–411 (2018)

    Article  MathSciNet  Google Scholar 

  • Trutschnig, W.: On a strong metric on the space of copulas and its induced dependence measure. J. Math. Anal. Appl. 384(2), 690–705 (2011)

    Article  MathSciNet  Google Scholar 

  • Van Oordt, M.R., Zhou, C.: Systematic tail risk. J. Financ. Quant. Anal. 51(2), 685–705 (2016)

    Article  Google Scholar 

  • Villani, C.: Optimal Transport Old and New, Grundlehren der mathematischen Wissenschaften. Springer, Berlin, vol. 338 (2009)

  • Wang, X., Dey, D.K.: Generalized extreme value regression for binary response data: an application to b2b electronic payments system adoption. Ann. Appl. Stat. 4(4), 2000–2023 (2010)

    Article  MathSciNet  Google Scholar 

  • Zimbidis, A.A., Frangos, N.E., Pantelous, A.A.: Modeling earthquake risk via extreme value theory and pricing the respective catastrophe bonds. ASTIN Bullet. 37(1), 163–183 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank all the anonymous reviewers and the Editor-in-Chief, Thomas Mikosch, for comments and suggestions that helped improve and clarify this manuscript. The work of K. Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2019R1A2C1003144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heelang Ryu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 312 KB)

(ZIP 73.6 KB)

Appendix

Appendix

For any convex function \(A\in \mathcal {A}\), which includes Aref, define \(A^{\prime }(0-)=-\infty \) and \(A^{\prime }(1+)=\infty \).

1.1 A.1 Proof of Theorem 1

Fix any s in \(\left [(b-1)/c_{0}, (b-1)/(c_{0}-1)\right ]\) and define w1,s and w2,s as in Eqs. 15 and 16. Then the line f(t) := s(tc0) + b satisfies f(0) ≤ Aref(0) = 1, f(1) ≤ Aref(1) = 1, and f(c0) = b > Aref(c0) by assumption. This implies that Aref(t) = f(t) should have at least two distinct solutions, where one is smaller than c0 and the other is larger than c0. This observation guarantees the existence of w1,s, w2,s in their corresponding intervals. Thus, f(t) ≥ Aref(t) on [w1,s, w2,s].

For the convexity of As, note that f(t) ≤ Aref(t) on t ∈ [0,w1,s] ∪ [w2,s, 1] and, therefore, \(A_{s}(t) = \max \nolimits (A_{{\textsf {ref}}}(t),f(t))\). Being the maximum of two convex functions, As is then convex. For this, we start by observing that

$$ A_{{\textsf{ref}}}^{\prime}(\tau+)\le A_{{\textsf{ref}}}^{\prime}(w_{1,s}+)\le s\le A_{{\textsf{ref}}}^{\prime}(w_{2,s}-)\le A_{{\textsf{ref}}}^{\prime}(\zeta-), $$

for any τ ∈ [0,w1,s] and ζ ∈ [w2,s, 1]. The first inequality comes from the convexity of Aref. The second inequality is valid because Aref(w1,s) = f(w1,s) and Areff on [w1,s, w2,s]. The other two inequalities are derived for similar reasons. Then, we observe for 0 ≤ tw1,s,

$$ \begin{array}{@{}rcl@{}} A_{{\textsf{ref}}}(t) &=& A_{{\textsf{ref}}}(w_{1,s}) - {\int}_{t}^{w_{1},s} A_{{\textsf{ref}}}^{\prime}(\tau+)\mathrm{d} \tau \\ &\geq &f(w_{1,s}) - {\int}_{t}^{w_{1,s}} f^{\prime}(\tau)\mathrm{d} \tau = f(t). \end{array} $$

Likewise, we get Areff on [w2,s, 1].

Now consider any s ∈ [A(c0−),A(c0+)]. Then, we see that

$$ A(c_{0}) - A(0) = {\int}_{0+}^{c_{0}} A^{\prime}(t-)\mathrm{d} t \leq c_{0} A^{\prime}(c_{0}-) \leq c_{0}s. $$

Since A(c0) = b and A(0) = 1 by assumption, s ≥ (b − 1)/c0. On the other hand,

$$ A(1) - A(c_{0}) = {\int}_{c_{0}}^{1-} A^{\prime}(t+)\mathrm{d} t \geq (1-c_{0}) A^{\prime}(c_{0}+) \geq (1-c_{0})s. $$

Since A(1) = 1 by assumption, s ≤ (1 − b)/(1 − c0). This means for such s, As is well defined and convex by previous arguments.

Lastly, we claim that AsA on [w1,s, w2,s]. Indeed, for all τ ∈ [w1,s, c0], the convexity of A implies A(τ−) ≤ A(c0−) ≤ s. By integrating this over [t,c0], we have

$$ b - A(t) \leq s(c_{0}-t) \Rightarrow A_{s}(t) =f(t) \leq A(t) $$

on [w1,s, c0]. By re-iterating the same arguments, we can prove As(t) ≤ A(t) on [c0, w2,s] as well. Consequently, we have the pointwise inequality Aref(t) ≤ As(t) ≤ A(t) on [w1,s, w2,s], which yields

$$ {\textsf{d}}_{[w_{1,s},w_{2,s}]}(A_{s},A_{{\textsf{ref}}}) \le {\textsf{d}}_{[w_{1,s},w_{2,s}]}(A,A_{{\textsf{ref}}}). $$

Since \({\textsf {d}}_{[0,w_{1,s}]}(A_{s}, A_{{\textsf {ref}}}) = {\textsf {d}}_{[w_{2,s},1]}(A_{s},A_{{\textsf {ref}}})=0\), we conclude that

$$ {\textsf{d}}(A_{s},A_{{\textsf{ref}}})\le {\textsf{d}}(A,A_{{\textsf{ref}}}). $$

1.2 A.2 Proof of Theorem 2

We are given Aref, c0, and b. Assume b < Aref(c0). Our target is to find the form of minimal \(A \in {\mathcal A}\) with A(c0) = b.

1.2.1 Minimal A(t)-form for t ∈ [0,c0]

Define \(v_{1} = \sup \mathcal {C}\) with

$$ \mathcal{C}=\left\{t\in [0,c_{0}): \frac{A_{{\textsf{ref}}}(t)-b}{t-c_{0}} \in [A_{{\textsf{ref}}}^{\prime}(t-),A_{{\textsf{ref}}}^{\prime}(t+)]\right\}, $$

and a convex function \({A_{w}^{l}}\) for any fixed 0 ≤ wv1,

$$ {A_{w}^{l}}(t) = \left\{\begin{array}{ll} A_{{\textsf{ref}}}(t) & \text{for} \ 0\le t < w\\ \frac{A_{{\textsf{ref}}}(w)-b}{w-c_{0}}(t-c_{0}) + b \ &\text{for} \ w\le t\le c_{0}. \end{array}\right. $$

The existence of v1 and the convexity of \({A_{w}^{l}}\) are ensured by Lemmas 1 and 2 and thereby \({A_{w}^{l}}\) is a well-defined convex function on [0,c0].

Lemma 1

The set\(\mathcal {C}\)isnonempty and\(\sup \mathcal {C} < c_{0}\).

Proof

The proof is given in the electronic supplementary material. □

Lemma 2

For any \(w\in [0,\sup \mathcal {C}]\) , \({A_{w}^{l}}\) is a convex function.

Proof

The proof is given in the electronic supplementary material. □

It remains to prove that \({A_{w}^{l}}\) minimizes the distance \({\textsf {d}}_{[0,c_{0}]}\) from Aref if w is suitably chosen. Specifically, we will prove that there exists w1 in \([0, \sup \mathcal {C}]\) such that \(\textsf {d}_{[0,c_{0}]}(A_{w_{1}}^{l},A_{\textsf {ref}})\le \textsf {d}_{[0,c_{0}]}(A,A_{\textsf {ref}})\) via the following three steps.

Step 1: The straightforward case is when A(t) ≤ Aref(t) on [0,c0]. Then, we simply set w1 = v1, which was defined as \(\sup \mathcal {C}\) above. Then, note that \(A(t) \leq A^{l}_{v_{1}}(t) =A_{\textsf {ref}}(t)\) on [0,v1] by definition. On the other hand, \(A(v_{1}) \leq A^{l}_{v_{1}}(v_{1}) = A_{\textsf {ref}}(v_{1})\) and \(A(c_{0})=A_{v_{1}}^{l}(c_{0})= b\). Due to the convexity of A, the line segment connecting \((v_{1}, A^{l}_{v_{1}}(v_{1}))\) and \((c_{0}, A^{l}_{v_{1}}(c_{0}))\) lies above the graph of A. By definition of \(A^{l}_{v_{1}}\), we get \(A(t) \le A_{v_{1}}^{l}(t)\) on [v1, c0].

On the other hand, from the definition of \(\mathcal {C}\), we get

$$ \frac{A_{{\textsf{ref}}}(u) - b}{u-c_{0}} \leq A_{{\textsf{ref}}}^{\prime}(u+) \leq A_{{\textsf{ref}}}^{\prime}(\tau+) $$

for each \(u \in \mathcal {C}\) and for any τ ∈ [u,c0]. By integrating the both sides over [u,t] for each t, we get

$$ \begin{array}{@{}rcl@{}} A_{{\textsf{ref}}}(t) - A_{{\textsf{ref}}}(u) & \geq & \frac{A_{{\textsf{ref}}}(u) - b}{u-c_{0}} (t-u) \\ &=& \frac{A_{{\textsf{ref}}}(u)-b}{u-c_{0}}(t-c_{0}) + b - A_{{\textsf{ref}}}(u). \end{array} $$

By taking a limit \(u \rightarrow v_{1}\), we obtain \(A_{v_{1}}^{l} \leq A_{{\textsf {ref}}}\) on [v1, c0]. Combining these observations, we conclude that \(A(t)\le A_{v_{1}}^{l}(t) \le A_{\textsf {ref}}(t)\) on [0,c0], and therefore,

$$ {\textsf{d}}_{[0,c_{0}]}(A_{v_{1}}^{l},A_{{\textsf{ref}}})\le {\textsf{d}}_{[0,c_{0}]}(A,A_{{\textsf{ref}}}). $$

Step 2: Now, suppose there exists t ∈ (0,c0) such that A(t) > Aref(t). Define

$$ t^{*} = \sup\{t\in[0,c_{0}): A(t)\ge A_{{\textsf{ref}}}(t)\}. $$

The continuity of A and Aref implies that A(t) = Aref(t). Assume tv1. Then it continues to work to have w1 = v1. Indeed, by continuity, we have \(A(v_{1}) \leq A_{\textsf {ref}}(v_{1}) = A_{v_{1}}^{l}(v_{1})\). From \(A(c_{0}) = A_{v_{1}}^{l}(c_{0}) = b\), we can conclude \(A(t) \le A_{v_{1}}^{l}(t)\) on [v1, c0] by the convexity of A. Thus,

$$ {\textsf{d}}_{[v_{1},c_{0}]}(A_{v_{1}}^{l},A_{{\textsf{ref}}})\le {\textsf{d}}_{[v_{1},c_{0}]}(A,A_{{\textsf{ref}}}). $$

Since \({\textsf {d}}_{[0,v_{1}]}(A_{v_{1}}^{l}, A_{{\textsf {ref}}}) = 0 \leq {\textsf {d}}_{[0,v_{1}]} (A, A_{{\textsf {ref}}})\), we conclude that

$$ {\textsf{d}}_{[0,c_{0}]}(A_{v_{1}}^{l},A_{{\textsf{ref}}}) \le {\textsf{d}}_{[0,c_{0}]}(A,A_{{\textsf{ref}}}). $$

Step 3: Assume t > v1. Then, for any 0 ≤ τ < t,

$$ A^{\prime}(\tau-) \le A^{\prime}(t^{*}-) \le \frac{b-A(t^{*})}{c_{0}-t^{*}}=\frac{b-A_{{\textsf{ref}}}(t^{*})}{c_{0}-t^{*}}. $$
(1)

The first inequality comes from the monotonicity of A and the second one does from A(c0) = b and the convexity of A. For convenience, define a linear function f(t) on t ∈ [0,c0],

$$ f(t) =\frac{b-A_{{\textsf{ref}}}(t^{*})}{c_{0}-t^{*}}(t-t^{*})+A_{{\textsf{ref}}}(t^{*}). $$

Then, we integrate (1) on both sides with τ over [t,t] to conclude fA on [0,t].

In Step 1, we saw that \(A_{v_{1}}^{l} \leq A_{{\textsf {ref}}}\) on the interval [0,c0]. In particular, \(A_{v_{1}}^{l}(t^{*}) \leq f(t^{*})\). From \(A_{v_{1}}^{l}(c_{0}) = f(c_{0}) = b\), we can conclude that the line segment \(A_{v_{1}}^{l}\) is below the line segment f on [v1, c0], leading to Aref(v1) ≤ f(v1). With f(0) ≤ A(0) = Aref(0), the point \(w_{1} = \sup \left \{t\in [0,v_{1}]: A_{\textsf {ref}}(t) \ge f(t) \right \}\) is well defined.

Now, we claim that \(A_{w_{1}}^{l}\) is closer to Aref than A on each of the intervals [w1, t] and [t, c0]. This concludes the proof. In fact, we show that

  • \(A_{{\textsf {ref}}} \leq A_{w_{1}}^{l} \leq A\) on [w1, t];

  • \(A \leq A_{w_{1}}^{l} \leq A_{{\textsf {ref}}}\) on [t, c0].

For the first part, note that the continuity of Aref implies Aref(w1) = f(w1) if w1 < v1. Even when w1 = v1, this is valid because Aref(v1) ≤ f(v1). Also by definition, we have \(A_{w_{1}}^{l}(w_{1}) = A_{\textsf {ref}}(w_{1})\) and \(A_{w_{1}}^{l}(c_{0}) = f(c_{0}) = b\). As a result \(A_{w_{1}}^{l} = f\) on [w1, c0]. On the other hand, the convexity together with Aref(w1) = f(w1) and Aref(t) = f(t) result in Areff on [w1, t]. We then conclude the first claim by recalling that fA on [0,t]. In terms of d, we have

$$ {\textsf{d}}_{[w_{1}, t^{*}]}(A_{w_{1}}^{l},A_{{\textsf{ref}}})\le {\textsf{d}}_{[w_{1}, t^{*}]}(A,A_{{\textsf{ref}}}). $$

For the second part, the first inequality is simply due to the facts that A and f have the same function values at t and c0 and that \(A_{w_{1}}^{l} = f\) on [w1, c0]. For the second inequality, as an intermediate step, we claim that

$$ \frac{A_{{\textsf{ref}}}(t^{*})-b}{t^{*}-c_{0}} \leq A_{{\textsf{ref}}}^{\prime}(t^{*}+). $$

Otherwise, the function value φ+(t) < 0 from Lemma 1. This eventually leads to a contradiction to v1 < t. Consequently, \(f^{\prime } \leq A_{{\textsf {ref}}}^{\prime }\) on [t, c0]. By integrating the both sides over [t, t] together with f(t) = Aref(t), we obtain fAref on [t, c0]. In terms of d,

$$ {\textsf{d}}_{[t^{*},c_{0}]}(A_{w_{1}}^{l},A_{{\textsf{ref}}})\le {\textsf{d}}_{[t^{*},c_{0}]}(A,A_{{\textsf{ref}}}). $$

Finally, \(A_{w_{1}}^{l} = A_{{\textsf {ref}}}\) on [0,w1] by definition, and thus \({\textsf {d}}_{[0,c_{0}]}(A_{w_{1}}^{l},A_{{\textsf {ref}}})\le {\textsf {d}}_{[0,c_{0}]}(A,A_{{\textsf {ref}}})\).

1.2.2 Minimal A(t)-form for t ∈ [c0, 1]

As done in the previous subsection, we now define v2 as

$$ v_{2}=\inf\left\{t\in (c_{0},1]: \frac{b-A_{{\textsf{ref}}}(t)}{c_{0}-t} \in [A_{{\textsf{ref}}}^{\prime}(t-),A_{{\textsf{ref}}}^{\prime}(t+)]\right\}. $$

We also set a function \({A_{w}^{r}}\) for any fixed v2w ≤ 1 as

$$ {A_{w}^{r}}(t) = \left\{\begin{array}{ll} \frac{A_{{\textsf{ref}}}(w)-b}{w-c_{0}}(t-c_{0}) + b \ &\text{for} \ c_{0}\le t\le w,\\ A_{{\textsf{ref}}}(t) & \text{for} \ w<t\le 1. \end{array}\right. $$

One can then repeat the proofs of the previous lemmas by considering Aref(1 − t) instead of Aref(t). Hence, without proofs, we state that v2 is well defined and \({A_{w}^{r}}\) is convex on [c0, 1]. Furthermore, above argument will be valid to prove that for a given \(A \in {\mathcal A}\) with A(c0) = b, there exists w2 ∈ [v2, 1] such that

$$ {\textsf{d}}_{[c_{0},1]}({A_{w}^{r}},A_{{\textsf{ref}}})\le {\textsf{d}}_{[c_{0},1]}(A,A_{{\textsf{ref}}}). $$

The only remaining part is that \(A_{w_{1},w_{2}}\) is convex on [0, 1].

Lemma 3

For any pair (w1, w2) ∈ [0,v1] × [v2, 1],\(A_{w_{1},w_{2}}\)isconvex on [0, 1] and\(A_{w_{1},w_{2}}\in \mathcal A\).

Proof

The proof is given in the electronic supplementary material. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, KK. & Ryu, H. Robust quantile estimation under bivariate extreme value models. Extremes 23, 55–83 (2020). https://doi.org/10.1007/s10687-019-00362-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-019-00362-2

Keywords

AMS 2000 Subject Classifications

Navigation