Skip to main content
Log in

Existence, uniqueness, and approximation solutions to linearized Chandrasekhar equation with sharp bounds

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

This article continues to study the linearized Chandrasekhar equation. We use the Hilbert-type inequalities to accurately calculate the norm of the Fredholm integral operator and obtain the exact range for the parameters of the linearized Chandrasekhar equation to ensure that there is a unique solution to the equation in \(L^p\) space. A series of examples that can accurately calculate the norm of Fredholm integral operator shows that the Chandrasekhar kernel functions do not need to meet harsh conditions. As the symbolic part of the Chandrasekhar kernel function and the non-homogeneous terms satisfy the exponential decay condition, we yield a normed convergence rate of the approximation solution in \(L^p\) sense, which adds new results to the theory of radiation transfer in astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anselone, P.M.: Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall Inc., Englewood Cliffs (1971)

    MATH  Google Scholar 

  2. Atkinson, K.E.: A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. SIAM, Philadelphia (1976)

    MATH  Google Scholar 

  3. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  4. Atkinson, K.E., Chien, D.: Piecewise polynomial collocation for boundary integral equations. SIAM J. Sci. Comput. 16, 651–681 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Atkinson, K.E., Chien, D.: A fast matrix–vector multiplication method for solving the radiosity equation. Adv. Comput. Math. 12, 151–174 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bückner, H.: A special method of successive approximations for Fredholm integral equations. Duke Math. J. 15, 197–206 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  8. Busbridge, I.W.: The Mathematics of Radiative Transfer, Cambridge Tracts in Mathematics, vol. 50. Cambridge University Press, Cambridge (1960)

    Google Scholar 

  9. Chandrasekhar, S.: Radiative Transfer. Oxford University Press, London (1950)

    MATH  Google Scholar 

  10. Chang, D.-C., Feng, S.-Y.: On the integral equations of Chandrasekhar type. J. Nonlinear Convex Anal. 19(3), 525–541 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, Z., Xu, Y.: The Petrov–Galerkin and iterated Petrov–Galerkin methods for second kind integral equations. SIAM J. Numer. Anal. 35, 406–434 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Z., Micchelli, C.A., Xu, Y.: Fast collocation methods for second kind integral equations. SIAM J. Numer. Anal. 40(1), 344–375 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, Q., Yang, B.: A survey on the study of Hilbert-type inequalities. J. Inequalities Appl. 2015, 302 (2015)

    Article  MathSciNet  Google Scholar 

  15. Conte, D., D’Ambrosio, R., Paternoster, B.: Advances on Collocation Based Numerical Methods for Ordinary Differential Equations and Volterra Integral Equations, Recent Advances in Computational and Applied Mathematics, pp. 41–66. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  16. Dai, X., Larson, D.R.: Wandering vectors for unitary systems and orthogonal wavelets. Mem. Am. Math. Soc. 134, 1 (1998)

    MATH  MathSciNet  Google Scholar 

  17. Dancer, E.N.: On positive solutions of some pairs of differential equations. Trans. Am. Math. Soc. 284(2), 729–743 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Das, R.N.: Application of Wiener–Hopf technique for a new representation of X- and Y-functions. Astrophys. Space Sci. 61, 169–173 (1979)

    Article  MATH  Google Scholar 

  19. Das, R.N.: Exact solution of a problem in a stellar atmosphere using the Laplace transform and the Wiener–Hopf technique. Astrophys. Space Sci. 63, 155–170 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Das, R.N.: Application of Wiener–Hopf technique to linear nonhomogeneous integral equations for a new representation of Chandrasekhar’s H-function in radiative transfer, its existence and uniqueness. J. Math. Anal. Appl. 337, 1366–1382 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dasgupta, S.R.: A new representation of the H-function of radiative transfer. Astrophys. Space Sci. 50, 187–203 (1977)

    Article  MathSciNet  Google Scholar 

  22. Di, J., Shi, Z.: Approximate solution of the integral equation on the half line. J. Zhe Jiang Univ. Technol. 37, 326–331 (2009)

    Google Scholar 

  23. Donoho, D., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Feng, S.-Y., Chang, D.-C.: An existence and uniqueness result for parameterized integral equations with Chandrasekhar kernels. J. Nonlinear Convex Anal. 19(12), 2053–2068 (2018)

    MathSciNet  Google Scholar 

  25. Feng, S.-Y., Chang, D.-C.: Exact bounds and approximating solutions to the Fredholm integral equations of Chandrasekhar type. Taiwan. J. Math. 23(2), 409–425 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  26. Fox, C.: A solution of Chandrasekhar’s integral equation. Trans. Am. Math. Soc. 99, 285–291 (1961)

    MATH  MathSciNet  Google Scholar 

  27. Gröchenig, K.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112(1), 1–42 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hardy, G.H.: Note on a theorem of Hilbert concerning series of positive term. Proc. Lond. Math. Soc. 23, 45–46 (1925)

    Google Scholar 

  29. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    MATH  Google Scholar 

  30. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jozi, M., Karimi, S.: Degenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind. J. Math. Model. 4(2), 117–132 (2016)

    MATH  MathSciNet  Google Scholar 

  32. Kaper, H.G.: A constructive approach to the solution of a class of boundary value problems of mixed type. J. Math. Anal. Appl. 63(3), 691–718 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  33. Koch, P.E., Lyche, T., Neamtu, M., Schumaker, L.L.: Control curves and knot insertion for trigonometric splines. Adv. Comput. Math. 3(4), 405–424 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kourganoff, V.A.: Basic Methods in Transfer Problems. Clarendon Press, Oxford (1952)

    MATH  Google Scholar 

  35. Kravchenko, V.F., Basarab, M.A.: Approximations by atomic functions and numerical methods for Fredholm integral equations of the second kind. Differ. Equ. 37(10), 1480–1490 (2001). Translated from Differentsial’nye Uravneniya 37(10), 1406–1414 (2001)

  36. Kwapisz, M., Turo, J.: On the existence and convergence of successive approximations for some functional equations in a Banach space. J. Differ. Equ. 16, 298–318 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lifanov, I.K.: The method of singular integral equations and a numerical experiment in mathematical physics, aerodynamics and the theory of elasticity and wave diffraction (in Russian). TOO, Yanus, Moscow (1995)

  38. Lyche, T., Winther, R.: A stable recurrence relation for trigonometric B-splines. J. Approx. Theory 25(3), 266–279 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  39. Mullikin, T.W.: Chandrasekhar’s X and Y equations. Trans. Am. Math. Soc. 113, 316–332 (1964)

    MATH  MathSciNet  Google Scholar 

  40. Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  41. Walter, G.G.: Wavelets and Other Orthogonal Systems with Applications. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  42. Withers, C.S., Nadarajah, S.: Fredholm equations for non-symmetric kernels with applications to iterated integral operators. Appl. Math. Comput. 204(1), 499–507 (2008)

    MATH  MathSciNet  Google Scholar 

  43. Yang, B.: On the Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)

    Google Scholar 

  44. Yang, B.: On the norm of an integral operator and applications. J. Math. Anal. Appl. 321, 182–192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zorich, V.A.: Mathematical Analysis (Part II), 4th Corrected Edition, Moscow (2002). Springer, Berlin (2004)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for a careful reading of the manuscript and several helpful comments which contributed to improve the presentation of the paper. Sheng-Ya Feng is partially supported by the National Natural Science Foundation of China (Grant Nos. 11501203 and 11426109), the China Postdoctoral Science Foundation (Grant No. 2016M600278), and the National Foundation of China Scholarship Council (Grant No. 201806745028). Der-Chen Chang is partially supported by an NSF Grant DMS-1408839 and a McDevitt Endowment Fund at Georgetown University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Ya Feng.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, SY., Chang, DC. Existence, uniqueness, and approximation solutions to linearized Chandrasekhar equation with sharp bounds. Anal.Math.Phys. 10, 17 (2020). https://doi.org/10.1007/s13324-020-00359-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00359-2

Keywords

Mathematics Subject Classification

Navigation